Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Wright State University

Series

Gallium compounds

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physics

Deep Traps In Algan/Gan Heterostructures Studied By Deep Level Transient Spectroscopy: Effect Of Carbon Concentration In Gan Buffer Layers, Z-Q. Fang, B. Claflin, David C. Look, D. S. Green, R. Vetury Sep 2010

Deep Traps In Algan/Gan Heterostructures Studied By Deep Level Transient Spectroscopy: Effect Of Carbon Concentration In Gan Buffer Layers, Z-Q. Fang, B. Claflin, David C. Look, D. S. Green, R. Vetury

Physics Faculty Publications

Electrical properties, including leakage currents, threshold voltages, and deep traps, of AlGaN/GaN heterostructure wafers with different concentrations of carbon in the GaN buffer layer, have been investigated by temperature dependent current-voltage and capacitance-voltage measurements and deep level transient spectroscopy (DLTS), using Schottky barrier diodes (SBDs). It is found that (i) SBDs fabricated on the wafers with GaN buffer layers containing a low concentration of carbon (low-[C] SBD) or a high concentration of carbon (high-[C] SBD) have similar low leakage currents even at 500 K; and (ii) the low-[C] SBD exhibits a larger (negative) threshold voltage than the high-[C] SBD. Detailed …


Electron-Irradiation-Induced Deep Level In N-Type Gan, Z-Q. Fang, Joseph W. Hemsky, David C. Look, M. P. Mack Jan 1998

Electron-Irradiation-Induced Deep Level In N-Type Gan, Z-Q. Fang, Joseph W. Hemsky, David C. Look, M. P. Mack

Physics Faculty Publications

Deep-level transient spectroscopy measurements of n-type GaN epitaxial layers irradiated with 1-MeV electrons reveal an irradiation-induced electron trap at EC−0.18 eV. The production rate is approximately 0.2 cm−1, lower than the rate of 1 cm−1 found for the N vacancy by Hall-effect studies. The defect trap cannot be firmly identified at this time. ©1998 American Institute of Physics.


Optical Properties Of Gan Grown On Zno By Reactive Molecular Beam Epitaxy, F. Hamdani, A. Botchkarev, W. Kim, H. Morkoç, M. Yeadon, J. M. Gibson, S.-C. Y. Tsen, David J. Smith, Donald C. Reynolds, David C. Look, K. R. Evans, Cole W. Litton, William C. Mitchel, P. Hemenger Jan 1997

Optical Properties Of Gan Grown On Zno By Reactive Molecular Beam Epitaxy, F. Hamdani, A. Botchkarev, W. Kim, H. Morkoç, M. Yeadon, J. M. Gibson, S.-C. Y. Tsen, David J. Smith, Donald C. Reynolds, David C. Look, K. R. Evans, Cole W. Litton, William C. Mitchel, P. Hemenger

Physics Faculty Publications

High quality wurtzite GaN epilayers have been grown on ZnO(0001) substrates by reactive molecular beam epitaxy. Photoluminescence and reflectivity measurements point to high quality presumably due to the near match of both the crystal lattice parameter and the stacking order between GaN and ZnO. In addition, the good films lack the characteristic yellow photoluminescence band. Any misorientation of the GaN epilayer planes with respect to the ZnO substrate is not detectable with polarized reflectivity. The x-ray double crystal diffraction measurements indicate this misorientation is much smaller than those for GaN epilayers on SiC and Al2O3 . © …