Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Kelvin Probe Force Microscopy On Graphene Thin Films For Solar Cell And Biosensing Applications, Faranak Sharifi Dec 2014

Kelvin Probe Force Microscopy On Graphene Thin Films For Solar Cell And Biosensing Applications, Faranak Sharifi

Electronic Thesis and Dissertation Repository

Graphene, a one atom thick planer sheet of carbon atoms, has attracted much attention in scientific and technological communities due to its remarkable electronic and physical properties. Graphene has been widely studied as an alternative to transparent conducting Indium Tin Oxide (ITO) electrodes in organic photovoltaics fabrication. Graphene platforms have also attracted interest in biological applications. However, large area graphene films are not yet widely commercialized because the fabrication techniques needed to prepare high quality graphene are expensive and non-scalable. More importantly, most of the low cost fabrication techniques require using toxic materials, which are not biocompatible for using graphene …


Exploring Bacterial Nanowires: From Properties To Functions And Implications, Kar Man Leung Aug 2011

Exploring Bacterial Nanowires: From Properties To Functions And Implications, Kar Man Leung

Electronic Thesis and Dissertation Repository

The discovery of electrically conductive bacterial nanowires from a broad range of microbes provides completely new insights into microbial physiology. Shewanella oneidensis strain MR-1, a dissimilatory metal-reducing bacterium, produces extracellular bacterial nanowires up to tens of micrometers long, with a lateral dimension of ~10 nm. The Shewanella bacterial nanowires are efficient electrical conductors as revealed by scanning probe techniques such as CP-AFM and STM.

Direct electrical transport measurements along Shewanella nanowires reveal a measured nanowire resistivity on the order of 1 Ω∙cm. With electron transport rates up to 109/s at 100 mV, bacterial nanowires can serve as a …