Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Using Superatomic Clusters And Charge Transfer Ligands To Control Electronic Characteristics Of Phosphorene Nanoribbons And Phosphorene Monolayer, Ryan Lambert Jan 2023

Using Superatomic Clusters And Charge Transfer Ligands To Control Electronic Characteristics Of Phosphorene Nanoribbons And Phosphorene Monolayer, Ryan Lambert

Theses and Dissertations

Phosphorene is a two-dimensional electron poor p-type semiconductor with high carrier mobility and great promise for applications in electronics and optoelectronics. As the main theme in this dissertation, the following work represents different investigations of various electronic properties associated with phosphorene. Most notable are the findings on charge transfer doping with metal-chalcogenide superatoms which displays novel control of the two most important properties of a semiconductor – the band gap energy and the nature of carriers. By tuning the width of the gap and p-/n-type character of conduction, we gain control over a material’s capacity to play a certain role …


Band Bending In Gan, Michael Foussekis Apr 2009

Band Bending In Gan, Michael Foussekis

Theses and Dissertations

Steady-state and transient surface photovoltages in undoped GaN are studied in various environments (air, nitrogen, oxygen, vacuum) at room temperature and 400 K with a Kelvin probe attached to an optical cryostat. The results are explained within a phenomenological model accounting for the accumulation of photo-generated holes at the surface, capture of free electrons from the bulk over the near-surface potential barrier, and emission of electrons from surface states into the bulk. Mechanisms of surface photovoltage are discussed in detail. Photoadsorption and photodesorption of negatively charged species will either increase or decrease the surface potential and thus band bending. Oxygen …