Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Innovations In Drop Shape Analysis Using Deep Learning And Solving The Young-Laplace Equation For An Axisymmetric Pendant Drop, Andres P. Hyer Jan 2023

Innovations In Drop Shape Analysis Using Deep Learning And Solving The Young-Laplace Equation For An Axisymmetric Pendant Drop, Andres P. Hyer

Theses and Dissertations

Axisymmetric Drop Shape Analysis (ADSA) is a technique commonly used to determine surface or interfacial tension. Applications of traditional ASDA methods to process analytical technologies are limited by computational speed and image quality. Here, we address these limitations using a novel machine learning approach to analysis. With a convolutional neural network (CNN), we were able to achieve an experimental fit precision of (+/-) 0.122 mN/m in predicting the surface tension of drop images at a rate of 1.5 ms^-1 versus 7.7 s^-1, which is more than 5,000 times faster than the traditional method. The results are validated on real images …


Equations Of State For Warm Dense Carbon From Quantum Espresso, Derek J. Schauss Jan 2021

Equations Of State For Warm Dense Carbon From Quantum Espresso, Derek J. Schauss

Theses and Dissertations

Warm dense plasma is the matter that exists, roughly, in the range of 10,000 to 10,000,000 Kelvin and has solid-like densities, typically between 0.1 and 10 grams per centimeter. Warm dense fluids like hydrogen, helium, and carbon are believed to make up the interiors of many planets, white dwarfs, and other stars in our universe. The existence of warm dense matter (WDM) on Earth, however, is very rare, as it can only be created with high-energy sources like a nuclear explosion. In such an event, theoretical and computational models that accurately predict the response of certain materials are thus very …


Sparsity And Weak Supervision In Quantum Machine Learning, Seyran Saeedi Jan 2020

Sparsity And Weak Supervision In Quantum Machine Learning, Seyran Saeedi

Theses and Dissertations

Quantum computing is an interdisciplinary field at the intersection of computer science, mathematics, and physics that studies information processing tasks on a quantum computer. A quantum computer is a device whose operations are governed by the laws of quantum mechanics. As building quantum computers is nearing the era of commercialization and quantum supremacy, it is essential to think of potential applications that we might benefit from. Among many applications of quantum computation, one of the emerging fields is quantum machine learning. We focus on predictive models for binary classification and variants of Support Vector Machines that we expect to be …