Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Predictive Formula For Electron Range Over A Large Span Of Energies, Anne C. Starley, Gregory Wilson, Lisa Montierth Phillipps, Jr Dennison Apr 2016

Predictive Formula For Electron Range Over A Large Span Of Energies, Anne C. Starley, Gregory Wilson, Lisa Montierth Phillipps, Jr Dennison

Posters

An empirical model developed by the Materials Research Group that predicts the approximate electron penetration depth—or range—of some common materials has been extended to predict the range for a broad assortment of other materials. The electron range of a material is the maximum distance electrons can travel through a material, before losing all of their incident kinetic energy. The original model used the Continuous-Slow-Down-Approximation for energy deposition in a material to develop a composite analytical formula which estimated the range from 10 MeV with an uncertainty of v, which describes the effective number of valence electrons. NV was empirically …


Predictive Formula For Electron Range Over A Large Span Of Energy, Anne Starley Jan 2016

Predictive Formula For Electron Range Over A Large Span Of Energy, Anne Starley

Physics Capstone Projects

A model developed by the Materials Research Group that calculates electron penetration range of some common materials, has been greatly expanded with the hope that such extensions will predict the range in other, perhaps, more interesting materials. Developments in this extended model aid in predicting the approximate penetration depth into diverse classes of materials for a broad range of energetic incident electrons (<10 eV to >10 MeV, with better than 20% accuracy). The penetration depth—or range—of a material describes the maximum distance electrons can travel through a material, before losing all of its incident kinetic energy. This model has started to predict …


Compilation And Comparison Of Electron Penetration Ranges As A Function Of Effective Number Of Valence Electrons, Teancum Quist Apr 2013

Compilation And Comparison Of Electron Penetration Ranges As A Function Of Effective Number Of Valence Electrons, Teancum Quist

Senior Theses and Projects

The continuous-slow-down approximation (CSDA) is used to create a simple composite analytical formula to estimate the range or maximum penetration depth of bombarding electrons into traditional materials including conductors, semiconductors, and insulators. This formula generates an approximation to the range using a single fitting parameter, Nv, described as the effective number of valence electrons. This applicability of the formulation extends to electrons with energies from 10MeV. These calculations are of great value for studies of high electron bombardment, such as electron spectroscopy or the vacuum of space. A list comprised of 187 materials has been collected that greatly …


Approximation Of Range In Materials As A Function Of Incident Electron Energy, Gregory Wilson, Jr Dennison Jan 2012

Approximation Of Range In Materials As A Function Of Incident Electron Energy, Gregory Wilson, Jr Dennison

Graduate Student Publications

A simple composite analytic expression has been developed to approximate the electron range in materials. The expression is applicable over more than six orders of magnitude in energy (<; 10 eV to >; MeV) and range ( 10-9-10-2 m), with an uncertainty of ≤ 20% for most conducting, semiconducting, and insulating materials. This is accomplished by fitting data from two standard NIST databases [ESTAR for the higher energy range and the electron inelastic mean free path (IMFP) for the lower energies]. In turn, these data have been fit with well-established semiempirical models for range and IMFP that are related to …


Approximation Of Range In Materials As A Function Of Incident Electron Energy, Gregory Wilson, John R. Dennison Jan 2010

Approximation Of Range In Materials As A Function Of Incident Electron Energy, Gregory Wilson, John R. Dennison

All Physics Faculty Publications

A simple composite analytic expression has been developed to approximate the electron range in materials. The expression is applicable over more than six orders of magnitude in energy (10 MeV) and range (10-9 m to 10-2 m), with uncertainty of ≤20% for most conducting, semiconducting and insulating materials. This is accomplished by fitting data from two standard NIST databases [ESTAR for the higher energy range and the electron IMFP (inelastic mean free path) for the lower energies]. In turn, these data have been fit with well-established semi-empirical models for range and IMFP that are related to standard materials properties (e.g., …