Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physics

Spacecraft Charging Test Considerations For Composite Materials, Allen Andersen, Wousik Kim, J. R. Dennison, Brian Wood, Todd A. Schneider, Jason Vaughn, Kenneth H. Wright Jr., Nelson W. Green, Eric Suh, Joel Schwartz, Abdul-Majeed Azad Dec 2022

Spacecraft Charging Test Considerations For Composite Materials, Allen Andersen, Wousik Kim, J. R. Dennison, Brian Wood, Todd A. Schneider, Jason Vaughn, Kenneth H. Wright Jr., Nelson W. Green, Eric Suh, Joel Schwartz, Abdul-Majeed Azad

Journal Articles

Composite materials present a growing challenge for spacecraft charging assessments. We review some recent lessons learned for charging tests of composite materials using both parallel-plate and electron beam test geometries. We also discuss examples of materials that exhibit significant variations between samples, despite them all having the same trade name.


Temporal And Spatial Correlations In Electron-Induced Arcs Of Adjacent Dielectric Islands, Justin Christensen, Jr Dennison, Justin Dekany Jan 2017

Temporal And Spatial Correlations In Electron-Induced Arcs Of Adjacent Dielectric Islands, Justin Christensen, Jr Dennison, Justin Dekany

Journal Articles

This study investigates very short duration (


Cryostat System For Spacecraft Materials Testing, Justin Dekany May 2016

Cryostat System For Spacecraft Materials Testing, Justin Dekany

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

An existing space environment simulation test chamber used in the study of electron emission, sample charging and discharge, electrostatic discharge and arcing, electron transport, and luminescence of spacecraft materials now has extended temperature control capabilities. By incorporating a two-stage, closed-cycle helium cryostat, it is now possible to simulate the temperature typical spacecraft will experience when in orbit, ranging from < 40 K to > 450 K. The system was designed to maintain compatibility with an existing ultrahigh vacuum chamber that can simulate diverse space environments. This vacuum chamber can simulate space environment conditions by producing the same pressure, amount of electrons, electromagnetic radiation and temperature …


Defects Density Of States Model Of Cathodoluminescent Intensity And Spectra Of Disordered Sio2, Amberly Evans Jensen, Jr Dennison Jan 2015

Defects Density Of States Model Of Cathodoluminescent Intensity And Spectra Of Disordered Sio2, Amberly Evans Jensen, Jr Dennison

Journal Articles

Electron beam measurements show that disordered SiO2 exhibits electron-induced luminescence, and that it varies with incident beam energy and current density, sample temperature, and wavelength. A simple model based on the electronic band structure and defect density of states—initially used to explain electron transport in highly disordered insulating materials—has been extended to predict the relative cathodoluminescent intensity and spectral radiance for disordered SiO2 as a function of these variables. Due to the large band gap of insulating SiO2, thermal excitation from the valence to conduction band is highly improbable; excitation is through collisions of the incident …


Variations In Cathodoluminescent Intensity Of Spacecraft Materials Exposed To Energetic Electron Bombardment, Justin Dekany, Justin Christensen, Jr Dennison, Amberly Evans Jensen, Gregory Wilson, Todd Schneider, Charles W. Bowers, Robert Meloy Jan 2015

Variations In Cathodoluminescent Intensity Of Spacecraft Materials Exposed To Energetic Electron Bombardment, Justin Dekany, Justin Christensen, Jr Dennison, Amberly Evans Jensen, Gregory Wilson, Todd Schneider, Charles W. Bowers, Robert Meloy

Journal Articles

Many contemporary spacecraft materials exhibit cathodoluminescence when exposed to electron flux from the space plasma environment. A quantitative, physics-based model has been developed to predict the intensity of the total glow as a function of incident electron current density and energy, temperature, and intrinsic material properties. We present a comparative study of the absolute spectral radiance for more than 20 types of dielectric and composite materials based on this model which spans more than three orders of magnitude. Variations in intensity are contrasted for different electron environments, different sizes of samples and sample sets, different testing and analysis methods, and …


Dynamic Interplay Between Spacecraft Charging, Space Environment Interactions And Evolving Materials, Jr Dennison Jan 2015

Dynamic Interplay Between Spacecraft Charging, Space Environment Interactions And Evolving Materials, Jr Dennison

Journal Articles

While the effects on spacecraft charging from varying environmental conditions and from the selection of different construction materials have been studied extensively, modification of materials properties by exposure to the space plasma environment can also have profound effects on spacecraft charging. Given the increasingly demanding nature of space missions, there is a clear need to extend our understanding of the dynamic nature of material properties that affect spacecraft charging and to expand our knowledgebase of materials’ responses to specific environmental conditions so that we can more reliably predict the long term response of spacecraft to their environment. This paper focuses …


Low Temperature Cathodoluminescence In Disordered Sio2, Amberly Evans Jensen, Jr Dennison, Gregory Wilson, Justin Dekany Jan 2014

Low Temperature Cathodoluminescence In Disordered Sio2, Amberly Evans Jensen, Jr Dennison, Gregory Wilson, Justin Dekany

Graduate Student Publications

In recent charging studies, a discernible glow was detected emanating from sample surfaces undergoing electron beam bombardment that resulted from a luminescent effect termed cathodoluminescence. This suggests that some of the materials used as optical elements, structural components, and thermal control surfaces in the construction of space-based observatories might luminesce when exposed to sufficiently energetic charged particle fluxes from the space plasma environment. A central focus of our experiments was the temperature dependence of the luminescent behavior. Here, an overview of our experimental results is given, as well as a qualitative model to describe the luminescent behavior. We look at …


Ultrahigh Vacuum Cryostat System For Extended Low Temperature Space Environment Testing, Justin Dekany, Robert H. Johnson, Gregory Wilson, Amberly Evans Jensen, Jr Dennison Jan 2014

Ultrahigh Vacuum Cryostat System For Extended Low Temperature Space Environment Testing, Justin Dekany, Robert H. Johnson, Gregory Wilson, Amberly Evans Jensen, Jr Dennison

Graduate Student Publications

The range of temperature measurements have been significantly extended for an existing space environment simulation test chamber used in the study of electron emission, sample charging and discharge, electrostatic discharge and arcing, electron transport, and luminescence of spacecraft materials. This was accomplished by incorporating a new two- stage, closed-cycle helium cryostat which has an extended sample temperature range from450 K, with long-term controlled stability of


In Situ Surface Voltage Measurements Of Dielectrics Under Electron Beam Irradiation, Joshua L. Hodges, John R. Dennison, Gregory Wilson, Amberly Evans, Alec Sim Jan 2014

In Situ Surface Voltage Measurements Of Dielectrics Under Electron Beam Irradiation, Joshua L. Hodges, John R. Dennison, Gregory Wilson, Amberly Evans, Alec Sim

All Physics Faculty Publications

New instrumentation has been developed for non- contact, in vacuo measurements of the electron beam-induced surface voltage as a function of time and position for non- conductive spacecraft materials in a simulated space environment. The novel compact system uses two movable capacitive sensor electrodes to measure surface charge distributions on samples, using a non-contact method that has little effect on charge dissipation from sample. Design details, calibration and characterization measurements of the system are presented, with <1 V to >30 kV surface voltage range, <0.5 V voltage resolution, and <1.5 mm spatial resolution. Used in conjunction with the capabilities of an existing ultrahigh vacuum electron emission test chamber, the new instrumentation facilitates measurements of charge accumulation, bulk resistivity, effects of charge depletion and accumulation on yield measurements, electron induced electrostatic breakdown potentials, radiation induced conductivity effects, and the radial dispersion of surface voltage.

Three types of measurements of surface voltage for polyimide (Kapton HNTM) serve to illustrate the research capabilities of the …


Small-Scale Simulation Chamber For Space Environment Survivability Testing, Robert H. Johnson, Lisa D. Montierth, Jr Dennison, James S. Dyer, Ethan R. Lindstrom Jan 2013

Small-Scale Simulation Chamber For Space Environment Survivability Testing, Robert H. Johnson, Lisa D. Montierth, Jr Dennison, James S. Dyer, Ethan R. Lindstrom

Browse All Undergraduate research

A vacuum chamber was designed that simulates the space environment to facilitate tests of material modification due to space environment interactions. Critical environmental elements to be simulated include an ultra high vacuum, a FUV/UV/VIS/NIR solar spectrum, an electron plasma flux, temperature extremes, and long duration exposure. To simulate the solar electromagnetic spectrum (EMS), a solar simulator was used with a range of 200 nm to 2000 nm. A Krypton lamp provides surrogate radiation for the prominent far ultraviolet hydrogen Lyman-α 120 nm emission not produced by the solar simulator. A mono-energetic electron flood gun (20 eV to 15 keV) provides …


Experimentally Derived Resistivity For Dielectric Samples From The Crres Internal Discharge Monitor, Nelson W. Green, A. Robb Frederickson, John R. Dennison Oct 2006

Experimentally Derived Resistivity For Dielectric Samples From The Crres Internal Discharge Monitor, Nelson W. Green, A. Robb Frederickson, John R. Dennison

All Physics Faculty Publications

Resistivity values were experimentally determined using charge-storage methods for six samples remaining from the construction of the internal discharge monitor flown on the Combined Release and Radiation Effects Satellite (CRRES). Three tests were performed over a period of three to five weeks each in a vacuum of ~5times10-6 torr with an average temperature of ~25degC to simulate a space environment. Samples tested included FR4, polytetrafluoroethylene (PTFE), and alumina with copper electrodes attached to one or more of the sample surfaces. FR4 circuit-board material was found to have a dark-current resistivity of ~1times1018 Omegamiddotcm and a moderately high polarization …


Methods For Resistivity Measurements Related To Spacecraft Charging, John R. Dennison, Jerilyn Brunson, Prasanna Swaminathan, Nelson Green, A. Robb Frederickson Oct 2006

Methods For Resistivity Measurements Related To Spacecraft Charging, John R. Dennison, Jerilyn Brunson, Prasanna Swaminathan, Nelson Green, A. Robb Frederickson

All Physics Faculty Publications

A key parameter in modeling differential spacecraft-charging is the resistivity of insulating materials. This parameter determines how charge will accumulate and redistribute across the spacecraft, as well as the timescale for charge transport and dissipation. American Society for Testing and Materials constant-voltage methods are shown to provide inaccurate resistivity measurements for materials with resistivities greater than ~1017 Omegamiddotcm or with long polarization decay times such as are found in many polymers. These data have been shown to often be inappropriate for spacecraft-charging applications and have been found to underestimate charging effects by one to four orders of magnitude for …