Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

Series

2012

Electrostatic discharge

Articles 1 - 2 of 2

Full-Text Articles in Physics

Defect-Driven Dynamic Model Of Electrostatic Discharge And Endurance Time Measurements Of Polymeric Spacecraft Materials, Alec Sim, John R. Dennison, Matthew Stormo Nov 2012

Defect-Driven Dynamic Model Of Electrostatic Discharge And Endurance Time Measurements Of Polymeric Spacecraft Materials, Alec Sim, John R. Dennison, Matthew Stormo

All Physics Faculty Presentations

Charge buildup on insulating materials in the space environment can produce long exposure to electric fields, which can lead to Electrostatic Discharge (ESD). Charge buildup is the leading cause of spacecraft failure due to space environment interactions. ESD can be thought of as the point at which the buildup of charge in localized defects, found in polymeric insulating materials, leads to a catastrophic change in electrical conductivity, which can cause the materials to structurally breakdown. Defects produced by radiation, or prolonged exposure to electric fields, significantly alter the endurance time, the time it takes to produce enough defects to generate …


Electrostatic Discharge Properties Of Fused Silica Coatings, Allen Andersen, Charles Sim, Jr Dennison Oct 2012

Electrostatic Discharge Properties Of Fused Silica Coatings, Allen Andersen, Charles Sim, Jr Dennison

Graduate Student Posters

The electric field value at which electrostatic discharge (ESD) occurs was studied for thin coatings of fused silica (highly disordered SiO2/SiOx) on conductive substrates, such as those encountered as optical coatings and in Si microfabrication. The electrostatic breakdown field was determined using an increasing voltage, while monitoring the leakage current. A simple parallel-plate capacitor geometry was used, under medium vacuum and at temperatures down to ~150 K using a liquid N2 reservoir. The breakdown field, pre-breakdown arcing and I-V curves for fused silica samples are compared for ~60 nm and ~80 μm thick, room and low temperature, and untreated and …