Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

Selected Works

2004

Dayside

Articles 1 - 1 of 1

Full-Text Articles in Physics

Global Dayside Ionospheric Uplift And Enhancements Due To Interplanetary Shock Electric Fields, B. R. Tsurutani, A. Mannucci, B. Ijima, A. Saito, K. Yumoto, M. A. Abdu, J. H.A. Sobral, W. D. Gonzalez, F. L. Guarnieri, T. Tsuda, Bela G. Fejer, T. J. Fuller-Rowell, J. U.O. Kozyra, J. C. Foster, A. Coster, V. M. Vasyliumas Jan 2004

Global Dayside Ionospheric Uplift And Enhancements Due To Interplanetary Shock Electric Fields, B. R. Tsurutani, A. Mannucci, B. Ijima, A. Saito, K. Yumoto, M. A. Abdu, J. H.A. Sobral, W. D. Gonzalez, F. L. Guarnieri, T. Tsuda, Bela G. Fejer, T. J. Fuller-Rowell, J. U.O. Kozyra, J. C. Foster, A. Coster, V. M. Vasyliumas

Bela G. Fejer

[1] The interplanetary shock/electric field event of 5–6 November 2001 is analyzed using ACE interplanetary data. The consequential ionospheric effects are studied using GPS receiver data from the CHAMP and SAC-C satellites and altimeter data from the TOPEX/Poseidon satellite. Data from ∼100 ground-based GPS receivers as well as Brazilian Digisonde and Pacific sector magnetometer data are also used. The dawn-to-dusk interplanetary electric field was initially ∼33 mV/m just after the forward shock (IMF BZ = −48 nT) and later reached a peak value of ∼54 mV/m 1 hour and 40 min later (BZ = −78 nT). The electric field was …