Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

All Physics Faculty Publications

Data assimilation

Articles 1 - 2 of 2

Full-Text Articles in Physics

Magnetic Meridional Winds In The Thermosphere Obtained From Global Assimilation Of Ionospheric Measurements (Gaim) Model, Levan Lomidze, Ludger Scherliess, Robert W. Schunk Sep 2015

Magnetic Meridional Winds In The Thermosphere Obtained From Global Assimilation Of Ionospheric Measurements (Gaim) Model, Levan Lomidze, Ludger Scherliess, Robert W. Schunk

All Physics Faculty Publications

Thermospheric neutral winds play an important part in the dynamics of ionospheric plasma and represent one of the key inputs for ionospheric physics-based models. Yet wind measurements are scarce and generally lack global coverage and continuity. To help mitigate this shortcoming, a data assimilation model was used to estimate neutral winds in the low- and middle-latitude thermosphere. Seasonal global maps of NmF2 andhmF2 were generated from Constellation Observing System for Meteorology, Ionosphere, and Climate radio occultation measurements for geomagnetically quiet and low solar flux conditions. The maps were assimilated into the Utah State University Global Assimilation of …


Ensemble Modeling With Data Assimilation Models: A New Strategy For Space Weather Specifications, Forecasts, And Science, Robert W. Schunk, Ludger Scherliess, V. Eccles, Larry Gardner, Jan Josef Sojka, L. Zhu, X. Pi, A. J. Mannucci, B. D. Wilson, A. Komjathy, C, Wang, G. Rosen Mar 2014

Ensemble Modeling With Data Assimilation Models: A New Strategy For Space Weather Specifications, Forecasts, And Science, Robert W. Schunk, Ludger Scherliess, V. Eccles, Larry Gardner, Jan Josef Sojka, L. Zhu, X. Pi, A. J. Mannucci, B. D. Wilson, A. Komjathy, C, Wang, G. Rosen

All Physics Faculty Publications

The Earth’s Ionosphere-Thermosphere-Electrodynamics (I-T-E) system varies markedly on a range of spatial and temporal scales and these variations have adverse effects on human operations and systems, including high-frequency communications, over-the-horizon radars, and survey and navigation systems that use Global Positioning System (GPS) satellites. Consequently, there is a need to elucidate the underlying physical pro- cesses that lead to space weather disturbances and to both mitigate and forecast near-Earth space weather.