Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physics

Path Integral Monte Carlo For Entanglement In Bosonic Lattices At T = 0, Emanuel Casiano-Diaz May 2023

Path Integral Monte Carlo For Entanglement In Bosonic Lattices At T = 0, Emanuel Casiano-Diaz

Doctoral Dissertations

Path-Integral Monte Carlo Worm Algorithm is one of many Quantum Monte Carlo (QMC) methods that serve as powerful tools for the simulation of quantum many-body systems. Developed in the late 90’s, this algorithm has been used with great success to study a wide array of physical models where exact calculation of observables is not possible due to the exponential size of the Hilbert space. One type of systems that have eluded PIMC-WA implementation are lattice models at zero temperature, which are of relevance in experimental settings, such as in optical lattices of ultra-cold atoms. In this thesis, we develop a …


How Dynamic Bond Results In The Unique Viscoelastic Behavior Of The Associating Polymers, Sirui Ge Aug 2022

How Dynamic Bond Results In The Unique Viscoelastic Behavior Of The Associating Polymers, Sirui Ge

Doctoral Dissertations

Associating polymer is a special kind of polymer possessing transient reversible bonds in addition to the conventional covalent bonds. The reversible bonds provide unique dynamics and fascinating viscoelastic properties, resulting in attractive applications for these polymers, such as self-healing and shape memory materials. Despite many years of studies, the understanding of dynamics of polymers with reversible bonds, especially on molecular level, is still in the rudimentary stage, preventing the rational design of the potential novel functional materials based on associating polymers. In this dissertation, we provide a detailed and quantitative understanding of the dynamics and viscoelastic properties of associating polymers. …


Direct Calculation Of Configurational Entropy: Pair Correlation Functions And Disorder, Clifton C. Sluss Aug 2022

Direct Calculation Of Configurational Entropy: Pair Correlation Functions And Disorder, Clifton C. Sluss

Doctoral Dissertations

Techniques such as classical molecular dynamics [MD] simulation provide ready access to the thermodynamic data of model material systems. However, the calculation of the Helmholtz and Gibbs free energies remains a difficult task due to the tedious nature of extracting accurate values of the excess entropy from MD simulation data. Thermodynamic integration, a common technique for the calculation of entropy requires numerous simulations across a range of temperatures. Alternative approaches to the direct calculation of entropy based on functionals of pair correlation functions [PCF] have been developed over the years. This work builds upon the functional approach tradition by extending …


Liquid-Liquid Transition In Ionic Liquids, Matthew Albert Harris May 2022

Liquid-Liquid Transition In Ionic Liquids, Matthew Albert Harris

Doctoral Dissertations

The properties of liquids have been linked to the existence of the liquid-liquid transition (LLT), a first-order thermodynamic transition from one liquid phase to another in a single- component liquid. LLT is fundamental to the understanding of the liquid state and has been theorized to manifest from a two-state feature of local order in the liquid. LLT has been reported in a variety of liquids with computer simulations comprising the bulk of the evidence. Experimental evidence for LLT remains controversial because it frequently manifests in the supercooled state, obscured by crystallization. In this dissertation, evidence is presented revealing LLT in …


Roughening Interfaces In Spatial Population Dynamics, Clarisa E. Castillo Aug 2021

Roughening Interfaces In Spatial Population Dynamics, Clarisa E. Castillo

Doctoral Dissertations

The spatial structure and geometry of biological systems can have a strong effect on that system’s evolutionary dynamics. In particular, spatially structured populations may invade one another, giving rise to invasion fronts that may exhibit qualitatively different evolutionary dynamics in different dimensions or geometric configurations. For examples of invasion fronts arising in nature, one might think of a thin layer of bacteria cells growing on a Petri dish, an animal species expanding into new territory, or a cancerous tumor growing into and competing with the surrounding healthy tissue. Perhaps the most well-studied class of invasion fronts in population genetics is …


Understanding The Fundamentals Of Ionic Conductivity In Polymer Electrolytes, Eric Wayne Stacy Dec 2020

Understanding The Fundamentals Of Ionic Conductivity In Polymer Electrolytes, Eric Wayne Stacy

Doctoral Dissertations

The rate of advancement for mobilized electronic technologies is outpacing the development of small efficient batteries. Lithium-ion batteries are currently the most widely used energy storage device for consumer electronics. Traditional lithium-ion batteries use a liquid electrolyte to separate the cathodes and anodes; however, conventional liquid electrolytes have inherent problems, such as consisting of flammable carbonate components, hazardous material, and have a significant cost/weight in the battery. In addition, the liquid electrolyte cannot prevent the growth of lithium dendrites during the charge/discharge cycle of the lithium-ion battery. These dendrites can connect the anode to the cathode of the battery cell …


Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha Dec 2017

Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha

Doctoral Dissertations

The narrow hydrophobic interior of a carbon nanotube (CNT) poses a barrier to the transport of water and ions, and yet, unexpectedly, numerous experimental and simulation studies have confirmed fast water transport rates comparable to those seen in biological aquaporin channels. These outstanding features of high water permeability and high solute rejection of even dissolved ions that would typically require a lot of energy for separation in commercial processes makes carbon nanotubes an exciting candidate for desalination membranes. Extending ion exclusion beyond simple mechanical sieving by the inclusion of electrostatics via added functionality to the nanotube bears promise to not …


Accuracy And Stability Of Integration Methods For Neutrino Transport In Core Collapse Supernovae, Kyle A. Gregory May 2017

Accuracy And Stability Of Integration Methods For Neutrino Transport In Core Collapse Supernovae, Kyle A. Gregory

Chancellor’s Honors Program Projects

No abstract provided.


Large Scale Brownian Dynamics Simulation Of Dilute And Semidilute Polymeric Solutions, Amir Saadat Dec 2016

Large Scale Brownian Dynamics Simulation Of Dilute And Semidilute Polymeric Solutions, Amir Saadat

Doctoral Dissertations

Excluded Volume (EV) and Hydrodynamic Interactions (HI) play a central role in static and dynamic properties of macromolecules in solution under equilibrium and nonequilibrium settings. The computational cost of incorporating HI in mesoscale Brownian dynamics (BD) simulations, particularly in the semidilute regime has motivated significant research aimed at development of high-fidelity and efficient techniques.

In this study, I have developed several algorithms for the mesoscale bead-spring representation of a macromolecular solution in dilute and semidilute regimes. The Krylov subspace method enables fast calculation of single chain dynamics with simulation time scaling of O(Nb2) [order N …


The Effect Of Attractive Polymer-Nanoparticle Interactions On The Local Segmental Dynamics Of Polymer Nanocomposites, Adam Prillaman Holt Aug 2016

The Effect Of Attractive Polymer-Nanoparticle Interactions On The Local Segmental Dynamics Of Polymer Nanocomposites, Adam Prillaman Holt

Doctoral Dissertations

Considerable progress has been made in understanding the miscibility and morphology of polymer nanocomposites (PNCs). However, to date, there is little understood concerning the modification of segmental mobility at the polymer-nanoparticle interface, which due to prevalence of interfaces in PNCs, will predominately control the viscoelastic and mechanical properties of these materials.

In this dissertation, static and dynamic experimental techniques are combined to identify the specific parameters controlling the modification of segmental dynamics at the polymer-nanoparticle interface in the model system of poly(2-vinyl pyridine)/silica nanocomposites. In general, the experimental results clearly demonstrate that the segmental dynamics at the polymer-nanoparticle interface are …


The Effect Of Composition And Architecture On Polymer Behavior In Homopolymer Blends And Inter-Filament Bonding In 3d Printed Models, Edward Roy Duranty Dec 2015

The Effect Of Composition And Architecture On Polymer Behavior In Homopolymer Blends And Inter-Filament Bonding In 3d Printed Models, Edward Roy Duranty

Doctoral Dissertations

This dissertation presents work that increases our understanding of the effects of composition and architecture on copolymer structure and dynamics and how they affect material diffusion between filaments in a 3D printed model. Copolymers are polymer chains made up of at least two different monomers. The ordering and arrangement of the two monomer species within a copolymer can have drastic effects on the behavior and properties of the copolymer.

The first chapter of this dissertation examines how the copolymer composition affects the structure and dynamics of the chain in a homopolymer blend. This study used a modified Monte Carlo BFM …


Hi-Fidelity Simulation Of The Self-Assembly And Dynamics Of Colloids And Polymeric Solutions With Long Range Interactions, Mahdy Malekzadeh Moghani Dec 2014

Hi-Fidelity Simulation Of The Self-Assembly And Dynamics Of Colloids And Polymeric Solutions With Long Range Interactions, Mahdy Malekzadeh Moghani

Doctoral Dissertations

Modeling the equilibrium properties and dynamic response of the colloidal and polymeric solutions provides valuable insight into numerous biological and industrial processes and facilitates development of novel technologies. To this end, the centerpiece of this research is to incorporate the long range electrostatic or hydrodynamic interactions via computationally efficient algorithms and to investigate the effect of these interactions on the self-assembly of colloidal particles and dynamic properties of polymeric solutions. Specifically, self-assembly of a new class of materials, namely bipolar Janus nano-particles, is investigated via molecular dynamic simulation in order to establish the relationship between individual particle characteristics, such as …


Composition Dependence Of The Flory-Huggins Interaction Parameter In Polymer Blends: Structural And Thermodynamic Calculations, Travis H. Russell Aug 2014

Composition Dependence Of The Flory-Huggins Interaction Parameter In Polymer Blends: Structural And Thermodynamic Calculations, Travis H. Russell

Doctoral Dissertations

Flory-Huggins Theory has been the basis for understanding polymer solvent and blended polymer thermodynamics for much of the last 60 years. Within this theory, a parameter (χ) [chi] was included to quantify the enthalpic energy of dispersion between distinct components. Thin film self-assembly of polymer melts and block copolymers depends critically on this parameter, and in application, χ has generally been assumed to be independent of the concentrations of the individual components of the system. However, Small-Angle Neutron Scattering data on isotopic polymer blends, such as polyethylene and deuterated polyethylene, have shown a roughly parabolic concentration dependency for …


Structural Dynamics And Charge Transport In Room Temperature Ionic Liquids, Philip James Griffin Aug 2014

Structural Dynamics And Charge Transport In Room Temperature Ionic Liquids, Philip James Griffin

Doctoral Dissertations

Room temperature ionic liquids are an important class of materials due to their chemical tunability and numerous advantageous physicochemical properties. As a result, ionic liquids are currently being investigated for use in a wide array of chemical and electrochemical applications. Despite their great potential, however, the relationship between the chemical structure and physicochemical properties of ionic liquids is not well understood.

To this end, this dissertation presents experimental studies of the reorientational structural dynamics and charge transport properties of a variety of room temperature ionic liquids using quasielastic light scattering spectroscopy and broadband dielectric spectroscopy.

Studies of a series of …