Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Comparing Twins Ion Temperature Maps With Mms, Ampere, And Themis Observations During July 26, 2017 Reconnection Event, Isabella M. Householder Jan 2022

Comparing Twins Ion Temperature Maps With Mms, Ampere, And Themis Observations During July 26, 2017 Reconnection Event, Isabella M. Householder

Honors Theses and Capstones

The solar wind releases a constant stream of ionized particles into space which causes complex behaviors to occur within Earth’s magnetosphere. These disruptions can initiate magnetic reconnection and cause flow reversal of ions in the magnetotail. Two flow reversal events were locally detected by the Magnetospheric Multiscale Mission (MMS) on July 26, 2017 at 0700 UT and 0730 UT. The Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) provide a global measurement of heated signatures of the magnetic field and detected an increase in ion temperature during these reconnection events without the presence of a geomagnetic storm. Active Magnetosphere and Planetary Electrodynamics …


2d Ion Temperature Maps From Twins Ena Data: Idl Scripts, Amy Keesee, Earl Scime, Anna Zaniewski, Roxanne Katus Jan 2019

2d Ion Temperature Maps From Twins Ena Data: Idl Scripts, Amy Keesee, Earl Scime, Anna Zaniewski, Roxanne Katus

Physics & Astronomy

Energetic neutral atom (ENA) flux from the NASA TWINS mission (and previously the MENA instrument on the NASA IMAGE mission) is projected along the line of sight to the equatorial plane in GSM coordinates. A Maxwellian fit is used to calculate the ion temperature in each equatorial plane bin, creating 2D maps of ion temperatures. The files are IDL .pro scripts that can be read using a text editor. IDL software is required to run. The primary script is twins_master.pro. The scripts call other scripts that were developed by the TWINS mission team as well as publicly available IDL libraries …


Characterizing Electrons In Primary And Secondary Magnetic Islands During Magnetic Reconnection, Jason Shuster Apr 2012

Characterizing Electrons In Primary And Secondary Magnetic Islands During Magnetic Reconnection, Jason Shuster

Honors Theses and Capstones

The physics underlying particle-in-cell simulations that are widely employed in studying plasma dynamics are reviewed. Results from a two-dimensional particle-in-cell simulation of fully kinetic, undriven, collisionless magnetic reconnection are studied to compare the electrons in a primary magnetic island formed from an ion current sheet and the electrons in a secondary island formed in an electron current layer. We find that the secondary island is born with a strong out-of-plane current density due to localized peaks in the electron density and out-of-plane electron velocity; the secondary island retains these features as it evolves, distinguishing it from the primary island. For …


Remote Observations Of Ion Temperatures In The Quiet Time Magnetosphere, A. M. Keesee, N. Buzulukova, J. Goldstein, D. J. Mccomas, E. E. Scime, Harlan E. Spence, M. C. Fok, K. Tallaksen Feb 2011

Remote Observations Of Ion Temperatures In The Quiet Time Magnetosphere, A. M. Keesee, N. Buzulukova, J. Goldstein, D. J. Mccomas, E. E. Scime, Harlan E. Spence, M. C. Fok, K. Tallaksen

Physics & Astronomy

[1] Ion temperature analysis of the first energetic neutral atom images of the quiet-time, extended magnetosphere provides evidence of multiple regions of ion heating. This study confirms the existence of a dawn-dusk asymmetry in ion temperature predicted for quiescent magnetospheric conditions by Spence and Kivelson (1993) and demonstrates that it is an inherent magnetospheric feature.


Gcr Access To The Moon As Measured By The Crater Instrument On Lro, A. W. Case, Harlan E. Spence, M. J. Golightly, J. C. Kasper, J. B. Blake, J. E. Mazur, L. W. Townsend, C. J. Zeitlin Oct 2010

Gcr Access To The Moon As Measured By The Crater Instrument On Lro, A. W. Case, Harlan E. Spence, M. J. Golightly, J. C. Kasper, J. B. Blake, J. E. Mazur, L. W. Townsend, C. J. Zeitlin

Physics & Astronomy

[1] Recent modeling efforts have yielded varying and conflicting results regarding the possibility that Earth's magnetosphere is able to shield energetic particles of >10 MeV at lunar distances. This population of particles consists of galactic cosmic rays as well as energetic particles that are accelerated by solar flares and coronal mass ejections. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter is in orbit about the Moon and is thus able to directly test these modeling results. Over the course of a month, CRaTER samples the upstream solar wind as well as various regions …


Ion Observations From Geosynchronous Orbit As A Proxy For Ion Cyclotron Wave Growth During Storm Times, L. W. Blum, E. A. Macdonald, S. P. Gary, M. F. Thomsen, Harlan E. Spence Oct 2009

Ion Observations From Geosynchronous Orbit As A Proxy For Ion Cyclotron Wave Growth During Storm Times, L. W. Blum, E. A. Macdonald, S. P. Gary, M. F. Thomsen, Harlan E. Spence

Physics & Astronomy

[1] There is still much to be understood about the processes contributing to relativistic electron enhancements and losses in the radiation belts. Wave particle interactions with both whistler and electromagnetic ion cyclotron (EMIC) waves may precipitate or accelerate these electrons. This study examines the relation between EMIC waves and resulting relativistic electron flux levels after geomagnetic storms. A proxy for enhanced EMIC waves is developed using Los Alamos National Laboratory Magnetospheric Plasma Analyzer plasma data from geosynchronous orbit in conjunction with linear theory. In a statistical study using superposed epoch analysis, it is found that for storms resulting in net …