Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of New Hampshire

2022

Articles 1 - 12 of 12

Full-Text Articles in Physics

Pyseg: A Python Package For 2d Material Flake Localization, Segmentation, And Thickness Prediction, Diana B. Horangic Dec 2022

Pyseg: A Python Package For 2d Material Flake Localization, Segmentation, And Thickness Prediction, Diana B. Horangic

Student Research Projects

Thin materials are of interest for their extraordinary physical, mechanical, thermal, electrical, and optical properties. Monolayers and bilayers of 2D materials can be manufactured through a variety of exfoliation methods. To determine layer thickness, Raman spectroscopy or other methods like Rayleigh scattering are used. These methods are, however, slow, and they require equipment beyond an optical microscope. A Python package that automates flake identification processes was built, with access solely to RGB data from an optical microscope assumed. My package, pyseg, localizes flakes on a substrate and then makes a rough estimate of their thickness from first principles. It can …


Helium Nanodroplets As An Efficient Tool To Investigate Hydrogen Attachment To Alkali Cations, Siegfried Kollotzek, José Campos-Martínez, Massimiliano Bartolomei, Fernando Pirani, Lukas Tiefenthaler, Marta I. Hernández, Teresa Lázaro, Eva Zunzunegui-Bru, Tomás González-Lezana, José Bretón, Javier Hernández-Rojas, Olof E. Echt, Paul Scheier Nov 2022

Helium Nanodroplets As An Efficient Tool To Investigate Hydrogen Attachment To Alkali Cations, Siegfried Kollotzek, José Campos-Martínez, Massimiliano Bartolomei, Fernando Pirani, Lukas Tiefenthaler, Marta I. Hernández, Teresa Lázaro, Eva Zunzunegui-Bru, Tomás González-Lezana, José Bretón, Javier Hernández-Rojas, Olof E. Echt, Paul Scheier

Faculty Publications

We report a novel method to reversibly attach and detach hydrogen molecules to positively charged sodium clusters formed inside a helium nanodroplet host matrix. It is based on the controlled production of multiply charged helium droplets which, after picking up sodium atoms and exposure to H2 vapor, lead to the formation of Nam+(H2)n clusters, whose population was accurately measured using a time-of-flight mass spectrometer. The mass spectra reveal particularly favorable Na+(H2)n and Na2+(H2)n clusters for specific “magic” numbers of attached hydrogen molecules. …


Solvation Of Large Polycyclic Aromatic Hydrocarbons In Helium: Cationic And Anionic Hexabenzocoronene, Miriam Kappe, Florent Calvo, Johannes Schöntag, Holger F. Bettinger, Serge Krasnokutski, Martin Kuhn, Elisabeth Gruber, Fabio Zappa, Paul Scheier, Olof E. Echt Oct 2022

Solvation Of Large Polycyclic Aromatic Hydrocarbons In Helium: Cationic And Anionic Hexabenzocoronene, Miriam Kappe, Florent Calvo, Johannes Schöntag, Holger F. Bettinger, Serge Krasnokutski, Martin Kuhn, Elisabeth Gruber, Fabio Zappa, Paul Scheier, Olof E. Echt

Faculty Publications

The adsorption of helium on charged hexabenzocoronene (Hbc, C42H18), a planar polycyclic aromatic hydrocarbon (PAH) molecule of D6h symmetry, is investigated by a combination of high-resolution mass spectrometry and classical and quantum computational methods. The ion abundance of HenHbc+ complexes versus size n features prominent local anomalies at n = 14, 38, 68, 82, and a weak one at 26, indicating that for these “magic” sizes the helium evaporation energies are relatively large. Surprisingly, mass spectra of anionic HenHbc complexes feature a different set of anomalies, namely at …


Adsorption Of Helium And Hydrogen On Triphenylene And 1,3,5-Triphenylbenzene, Bergmeister Bergmeister, Kollotzek Kollotzek, Florent Calvo, Elisabeth Gruber, Fabio Zappa, Paul Scheier, Olof E. Echt Aug 2022

Adsorption Of Helium And Hydrogen On Triphenylene And 1,3,5-Triphenylbenzene, Bergmeister Bergmeister, Kollotzek Kollotzek, Florent Calvo, Elisabeth Gruber, Fabio Zappa, Paul Scheier, Olof E. Echt

Faculty Publications

The adsorption of helium or hydrogen on cationic triphenylene (TPL, C18H12), a planar polycyclic aromatic hydrocarbon (PAH) molecule, and of helium on cationic 1,3,5-triphenylbenzene (TPB, C24H18), a propeller-shaped PAH, is studied by a combination of high-resolution mass spectrometry and classical and quantum computational methods. Mass spectra indicate that HenTPL+ complexes are particularly stable if n = 2 or 6, in good agreement with the quantum calculations which show that for these sizes the helium atoms are strongly localized on either side of the central carbon ring for n = …


Stabilization Of Phenanthrene Anions In Helium Nanodroplets, Siegfried Kollotzek, Farhad Izadi, Miriam Meyer, Stefan Bergmeister, Fabio Zappa, Stephan Denifl, Olof E. Echt, Paul Scheier, Elisabeth Gruber May 2022

Stabilization Of Phenanthrene Anions In Helium Nanodroplets, Siegfried Kollotzek, Farhad Izadi, Miriam Meyer, Stefan Bergmeister, Fabio Zappa, Stephan Denifl, Olof E. Echt, Paul Scheier, Elisabeth Gruber

Faculty Publications

It has been debated for years if the polycyclic aromatic hydrocarbon phenanthrene exists in its anionic form, or, in other words, if its electron affinity (EA) is positive or negative. In this contribution we confirm that the bare phenanthrene anion Ph- created in a binary collision with an electron at room temperature has a lifetime shorter than microseconds. However, the embedding of neutral phenanthrene molecules in negatively charged helium nanodroplets enables the formation of phenanthrene anions by charge transfer processes and the stabilization of the latter in the ultracold environment. Gentle shrinking of the helium matrix of phenanthrene-doped HNDs …


Phenanthrene: Establishing Lower And Upper Bounds To The Binding Energy Of A Very Weakly Bound Anion, Elisabeth Gruber, Siegfried Kollotzek, Stefan Bergmeister, Fabio Zappa, Milan Ončák, Paul Scheier, Olof E. Echt Feb 2022

Phenanthrene: Establishing Lower And Upper Bounds To The Binding Energy Of A Very Weakly Bound Anion, Elisabeth Gruber, Siegfried Kollotzek, Stefan Bergmeister, Fabio Zappa, Milan Ončák, Paul Scheier, Olof E. Echt

Faculty Publications

Quite a few molecules do not form stable anions that survive the time needed for their detection; their electron affinities (EA) are either very small or negative. How does one measure the EA if the anion cannot be observed? Or, at least, can one establish lower and upper bounds to their EA? We propose two approaches that provide lower and upper bounds. We choose the phenanthrene (Ph) molecule whose EA is controversial. Through competition between helium evaporation and electron detachment in HenPh- clusters, formed in helium nanodroplets, we estimate the lower bound of the vertical detachment energy …


Generally Covariant Theory Of Multipole Moment Conserving Quasiparticles, Gavin Eric Riley Jan 2022

Generally Covariant Theory Of Multipole Moment Conserving Quasiparticles, Gavin Eric Riley

Honors Theses and Capstones

This report represents the creation of a field theory which is capable of describing quasiparticle excitations that preserve 2^k -pole moments. These quasiparticles exhibit certain ’semidynamic’ properties such as individual particle immobility but free movement of bound 2^L-tuples. We provide a review of work done on dipole conserving fractons and their dynamics [1] and expand upon it to describe higher moment conserving systems with global quadratic (and higher) phase symmetry. This requires the selection of the temporal and spatial directions. The selection of a temporal direction is done with a foliation defined by an anisotropic scaling of space and time, …


Development Of A Fluxgate Magnetometer Model, Eleonora Olsmats Jan 2022

Development Of A Fluxgate Magnetometer Model, Eleonora Olsmats

Honors Theses and Capstones

As a part of the UNH SWFO-L1 mission to monitor space weather and the sun’s behavior, the fluxgate magnetometer is an important component to measure external magnetic fields. The basic principle of a fluxgate magnetometer is to detect changes in the ambient magnetic field by inducing a magnetic field in a ferromagnetic material via a drive winding. Each magnetometer is unique due to the ferromagnetic properties of the core material which can be seen in the hysteresis loop which is a relationship between the magnetic field strength (H) and the induced magnetic field (B). Measuring the hysteresis of a fluxgate …


A Review Of Monte Carlo Methods And Their Application In Medical Physics For Simulating Radiation Transport, Joe Shields Jan 2022

A Review Of Monte Carlo Methods And Their Application In Medical Physics For Simulating Radiation Transport, Joe Shields

Honors Theses and Capstones

Monte Carlo methods are used to calculate statistical behavior through the use of random number generators and probability density functions. They have been used extensively in medical physics for research in radiotherapy, designing technology, dosimetry, and advanced clinical applications. This paper provides a background on Monte Carlo methods and a review of radiation therapy physics and dosimetry. Additionally, there is a discussion of the different ways Monte Carlo methods are used in medical physics as well as a review of current research related to Monte Carlo methods. The final portion of this paper contains my own Monte Carlo simulation using …


Comparing Twins Ion Temperature Maps With Mms, Ampere, And Themis Observations During July 26, 2017 Reconnection Event, Isabella M. Householder Jan 2022

Comparing Twins Ion Temperature Maps With Mms, Ampere, And Themis Observations During July 26, 2017 Reconnection Event, Isabella M. Householder

Honors Theses and Capstones

The solar wind releases a constant stream of ionized particles into space which causes complex behaviors to occur within Earth’s magnetosphere. These disruptions can initiate magnetic reconnection and cause flow reversal of ions in the magnetotail. Two flow reversal events were locally detected by the Magnetospheric Multiscale Mission (MMS) on July 26, 2017 at 0700 UT and 0730 UT. The Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) provide a global measurement of heated signatures of the magnetic field and detected an increase in ion temperature during these reconnection events without the presence of a geomagnetic storm. Active Magnetosphere and Planetary Electrodynamics …


Location And Calibration Of Lightning Pulses From Lofar Radiation Measurements, Nicholas R. Demers Jan 2022

Location And Calibration Of Lightning Pulses From Lofar Radiation Measurements, Nicholas R. Demers

Honors Theses and Capstones

Lightning has the power to shock and awe as an incredible force of nature, yet so many phenomena surrounding lightning are still not well-understood. In fact, the very physics regarding what actually sparks a lightning strike remain poorly defined. In an effort to understand how lightning initiation is achieved, data collected from the Low Frequency Array in the Netherlands were calibrated and interferometry performed to map the flash in 4D space. The calibration process itself is explored, from choosing lightning sources to calibrate, to the various stages of calibration leading to a fully calibrated flash ready for interferometric analysis. Using …


Attempts To Measure Nanosecond Resolved Electronic Dynamics Of Charge Density Wave Phase Transition In 1t-Tas2, Ben Campbell Jan 2022

Attempts To Measure Nanosecond Resolved Electronic Dynamics Of Charge Density Wave Phase Transition In 1t-Tas2, Ben Campbell

Honors Theses and Capstones

Scanning tunneling microscopes allow for atomic spatial resolution but the resulting images are necessarily time-averaged and fast dynamics are lost. Pump-probe spectroscopy is a common optical technique used to measure ultrafast electronic dynamics but the integration of optical pump-probe spectroscopy into an STM requires specialized knowledge and equipment. Alternatively, an all-electronic pump-probe spectroscopy technique has recently been developed for use with an STM that replaces the laser pulses of optical pump-probe with voltage pulses. In this paper, I implemented an all-electronic pump-probe scheme into an existing scanning tunneling microscope using an arbitrary waveform generator and a lock-in amplifier. I developed …