Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physics

High-Order-Harmonic-Generation Spectroscopy With An Elliptically Polarized Laser Field, M. V. Frolov, N. L. Manakov, T. S. Sarantseva, Anthony F. Starace Dec 2012

High-Order-Harmonic-Generation Spectroscopy With An Elliptically Polarized Laser Field, M. V. Frolov, N. L. Manakov, T. S. Sarantseva, Anthony F. Starace

Anthony F. Starace Publications

Analytic formulas describing high-order-harmonic generation (HHG) by atoms in an intense laser field with small ellipticity are obtained quantum mechanically in the tunneling limit. The results show that factorization of the HHG yield in terms of an electron wave packet and the photorecombination cross section (PRCS) is valid only for s states of a bound atomic electron, whereas the HHG yield for p states involves two different atomic parameters. For the latter case, elliptic HHG spectroscopy enables one to retrieve both the energy and angular dependence of the PRCS of the target atom, as we illustrate for the case of …


Threshold Effects In Strong-Field Ionization: Energy Shifts And Rydberg Structures, Katarzyna Krajewska, Ilya I. Fabrikant, Anthony F. Starace Nov 2012

Threshold Effects In Strong-Field Ionization: Energy Shifts And Rydberg Structures, Katarzyna Krajewska, Ilya I. Fabrikant, Anthony F. Starace

Anthony F. Starace Publications

The behavior of strong-field ionization rates of neutral atoms in the vicinity ofmultiphoton ionization thresholds is analyzed using formal collision theory.Our approach,which accounts nonperturbatively for effects of an intense laser field, shows that the ionization rates have a nearly constant behavior below and above each multiphoton threshold and that between such thresholds there are an apparently finite number of rapid oscillations due to resonances with laser-field-modified Rydberg states. This pattern is typical for any atomic target, as we illustrate specifically for hydrogen and neon atoms. The flat behavior of the ionization yield near multiphoton thresholds gives the appearance of an …


Equilibrium Magnetic States In Individual Hemispherical Permalloy Caps, Robert Streubel, Volodymyr P. Kravchuk, Denis D. Sheka, Denys Makarov, Florian Kronast, Oliver G. Schmidt, Yuri Gaididei Sep 2012

Equilibrium Magnetic States In Individual Hemispherical Permalloy Caps, Robert Streubel, Volodymyr P. Kravchuk, Denis D. Sheka, Denys Makarov, Florian Kronast, Oliver G. Schmidt, Yuri Gaididei

Robert Streubel Papers

The magnetization distributions in individual soft magnetic permalloy caps on non-magnetic spherical particles with sizes ranging from 50 to 800nm are investigated. We experimentally visualize the magnetic structures at the resolution limit of the x-ray magnetic circular dichroism photoelectron emission microscopy (XMCD-PEEM). By analyzing the so-called tail contrast in XMCD-PEEM, the spatial resolution is significantly enhanced, which allowed us to explore magnetic vortices and their displacement on curved surfaces. Furthermore, cap nanostructures are modeled as extruded hemispheres to determine theoretically the phase diagram of equilibrium magnetic states. The calculated phase diagram agrees well with the experimental observations. © 2012 American …


Magnetic Vortices On Closely Packed Spherically Curved Surfaces, Robert Streubel, Denys Makarov, Florian Kronast, Volodymyr Kravchuk, Manfred Albrecht, Oliver G. Schmidt May 2012

Magnetic Vortices On Closely Packed Spherically Curved Surfaces, Robert Streubel, Denys Makarov, Florian Kronast, Volodymyr Kravchuk, Manfred Albrecht, Oliver G. Schmidt

Robert Streubel Papers

We investigate the change of magnetic vortex states driven by curvature. The equilibrium state and magnetization reversal of soft magnetic permalloy (Py, Ni 80Fe 20) caps on self-assembled spherical particles with diameters of 100, 330, and 800 nm are investigated, revealing the vortex ground state for individual caps and closely packed cap arrays. The magnetic coupling between vortices is substantially reduced due to the shape of the cap as apparent in a much weaker dependence of the magnetization reversal process on the separation distance. Interestingly, the remaining coupling is still sufficiently large to introduce chirality frustrated vortex states …


Out-Of-Surface Vortices In Spherical Shells, Volodymyr P. Kravchuk, Denis D. Sheka, Robert Streubel, Denys Makarov, Oliver G. Schmidt, Yuri Gaididei Apr 2012

Out-Of-Surface Vortices In Spherical Shells, Volodymyr P. Kravchuk, Denis D. Sheka, Robert Streubel, Denys Makarov, Oliver G. Schmidt, Yuri Gaididei

Robert Streubel Papers

The interplay of topological defects with curvature is studied for out-of-surface magnetic vortices in thin spherical nanoshells. In the case of an easy-surface Heisenberg magnet it is shown that the curvature of the underlying surface leads to a coupling between the localized out-of-surface component of the vortex with its delocalized in-surface structure, i.e., polarity-chirality coupling. © 2012 American Physical Society.


Ultrafast Intense-Field Photoionization And Photofragmentation Of Systematic Series Of Substituted Organic Molecules, Timothy D. Scarborough Apr 2012

Ultrafast Intense-Field Photoionization And Photofragmentation Of Systematic Series Of Substituted Organic Molecules, Timothy D. Scarborough

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

The abundance and relevance of organic molecules similar to benzene makes their study important. Studying the interactions of such molecules with intense light fields has implications for the generation of short-wavelength radiation, attosecond science, high-harmonic generation, and many other fields. However, the computing power necessary to complete fully ab initio calculations describing molecules of this size does not exist; this leaves theoretical studies to rely on assumptions and approximations just to calculate the energies of the ground state. Including any sort of dynamics in these calculations is prohibitively complicated, and this makes experimental observations important. Since many organic molecules are …


Qpced2.0: A Computer Program For The Processing And Quantification Of Polycrystalline Electron Diffraction Patterns, Xingzhong Li Jan 2012

Qpced2.0: A Computer Program For The Processing And Quantification Of Polycrystalline Electron Diffraction Patterns, Xingzhong Li

Nebraska Center for Materials and Nanoscience: Faculty Publications

The processing and quantification of electron diffraction patterns have become vital in advanced electron crystallographic analysis work. A computer program, QPCED2.0, has been developed for the handling of selected-area electron diffraction patterns for polycrystalline materials. QPCED2.0 can be used to enhance the visibility of electron diffraction patterns, to convert electron diffraction patterns into intensity profiles, and to retrieve precisely the lattice d spacings and the integral intensities of the diffraction rings. The design and implementation of QPCED2.0 are elucidated and application examples are given.


Observation And Identification Of Metastable Excited States In Ultrafast Laser-Ionized Pyridine, David B. Foote, Timothy D. Scarborough, Cornelis J. Uiterwaal Jan 2012

Observation And Identification Of Metastable Excited States In Ultrafast Laser-Ionized Pyridine, David B. Foote, Timothy D. Scarborough, Cornelis J. Uiterwaal

C.J.G.J. Uiterwaal Publications

We report on the fragmentation of ionized pyridine (C5H5N) molecules by focused 50 fs, 800 nm laser pulses. Such ionization produces several metastable ionic states that fragment within the field-free drift region of a reflectron- type time of flight mass spectrometer, with one particular metastable dissociation being the leading fragmentation process. Because the time of flight is no longer dependent in a simple way on the mass of the ion, the metastable decay is manifested as an unfocused peak on the mass spectrum that appears at a time of flight not corresponding to an integer mass. …


Growth Diagram And Magnetic Properties Of Hexagonal Lufe2o4 Thin Films, Wenbin Wang, Zheng Gai, Miaofang Chi, Jason D. Fowlkes, Jieyu Yi, Leyi Zhu, Xuemei Cheng, David J. Keavney, Paul C. Snijders, Thomas Z. Ward, Jian Shen, Xiaoshan Xu Jan 2012

Growth Diagram And Magnetic Properties Of Hexagonal Lufe2o4 Thin Films, Wenbin Wang, Zheng Gai, Miaofang Chi, Jason D. Fowlkes, Jieyu Yi, Leyi Zhu, Xuemei Cheng, David J. Keavney, Paul C. Snijders, Thomas Z. Ward, Jian Shen, Xiaoshan Xu

Xiaoshan Xu Papers

Agrowth diagram of Lu-Fe-O compounds on MgO (111) substrates using pulsed laser deposition is constructed based on extensive growth experiments. The LuFe2O4 phase can only be grown in a small range of temperature and O2 pressure conditions. An understanding of the growth mechanism of Lu-Fe-O compound films is offered in terms of the thermochemistry at the surface. Superparamagnetism is observed in the LuFe2O4 film and is explained in terms of the effect of the impurity hexagonal LuFeO3 (h-LuFeO3) phase and structural defects.


Thermal Quench Effects On Ferroelectric Domain Walls, P. Paruch, A. B. Kolton, X. Hong, C. H. Ahn, T. Giamarchi Jan 2012

Thermal Quench Effects On Ferroelectric Domain Walls, P. Paruch, A. B. Kolton, X. Hong, C. H. Ahn, T. Giamarchi

Xia Hong Publications

Using piezoresponse force microscopy on epitaxial ferroelectric thin films, we have measured the evolution of domain wall roughening as a result of heat-quench cycles up to 735 ◦C, with the effective roughness exponent ζ changing from 0.25 to 0.5. We discuss two possible mechanisms for the observed ζ increase: a quench from a thermal one-dimensional configuration and from a locally equilibrated pinned configuration with a crossover from a two- to one-dimensional regime. We find that the postquench spatial structure of the metastable states, qualitatively consistent with the existence of a growing dynamical length scale whose ultraslow evolution is primarily controlled …


Transverse Measurements Of Polarization In Optically Pumped Rb Vapor Cells, J. M. Dreiling, E. B. Norrgard, D. Tupa, Timothy J. Gay Jan 2012

Transverse Measurements Of Polarization In Optically Pumped Rb Vapor Cells, J. M. Dreiling, E. B. Norrgard, D. Tupa, Timothy J. Gay

Timothy J. Gay Publications

We have developed a simple heuristic method for determining the polarization of an optically pumped alkalimetal vapor. A linearly polarized probe beam traverses a vapor cell perpendicular to the pump-beam propagation direction, and the transmitted beam intensity is monitored for orthogonal linear polarizations. As the probe beam is scanned in frequency across the D1 transition, its linear-polarization-dependent transmission can be used as a measure of the atomic orientation of the vapor. We analyze these transmission differences and their dependence on the alkali-metal number density in the vapor.


Understanding The Effect Of Ferroelectric Polarization On Power Conversion Efficiency Of Organic Photovoltaic Devices, Yongbo Yuan, Pankaj Sharma, Zhengguo Xiao, Shashi Poddar, Alexei Gruverman, Stephen Ducharme, Jinsong Huang Jan 2012

Understanding The Effect Of Ferroelectric Polarization On Power Conversion Efficiency Of Organic Photovoltaic Devices, Yongbo Yuan, Pankaj Sharma, Zhengguo Xiao, Shashi Poddar, Alexei Gruverman, Stephen Ducharme, Jinsong Huang

Stephen Ducharme Publications

It is demonstrated that the power conversion efficiency (PCE) of organic photovoltaic devices can be increased by inserting an ultrathin film of a ferroelectric co-polymer, poly(vinylidenefluoridetrifluoroethylene) (P(VDF-TrFE)), at the metal–organic interface, due to an enhancement of the charge extraction efficiency. Specifically, the effect of P(VDF-TrFE) crystallinity on its function in ferroelectric organic photovoltaic (FE-OPV) devices has been studied by several methods. Highly crystalline and amorphous P(VDF-TrFE) films have been prepared by the Langmuir–Blodgett method and spincoating from acetone solution, respectively. The polymer solar cell devices with a crystalline P(VDFTrFE) interfacial layer at the cathode have larger PCE than the structures …


Crystal Field Splitting And Optical Bandgap Of Hexagonal Lufeo3 Films, Wenbin Wang, Hongwei Wang, Xiaoying Xu, Leyi Zhu, Lixin He, Elizabeth Wills, Xuemei Cheng, David J. Keavney, Jian Shen, Xifan Wu, Xiaoshan Xu Jan 2012

Crystal Field Splitting And Optical Bandgap Of Hexagonal Lufeo3 Films, Wenbin Wang, Hongwei Wang, Xiaoying Xu, Leyi Zhu, Lixin He, Elizabeth Wills, Xuemei Cheng, David J. Keavney, Jian Shen, Xifan Wu, Xiaoshan Xu

Xiaoshan Xu Papers

Hexagonal LuFeO3 films have been studied using x-ray absorption and optical spectroscopy. The crystal splitting of Fe3+ is extracted as Ee' - Ee" = 0.7 eV and Ea'1 - Ee' = 0.9 eV, and a 2.0 eV optical bandgap is determined assuming a direct gap. First-principles calculations confirm the experiments that the relative energies of crystal field splitting states do follow Ea'1 > Ee' > Ee" with slightly underestimated values and a bandgap of 1.35 eV.