Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Semi-Empirical Modeling Of Liquid Carbon's Containerless Solidification, Philip Chrostoski Oct 2021

Semi-Empirical Modeling Of Liquid Carbon's Containerless Solidification, Philip Chrostoski

Dissertations

Elemental carbon has important structural diversity, ranging from nanotubes through graphite to diamond. Previous studies of micron-size core/rim carbon spheres extracted from primitive meteorites suggest they formed around such stars via the solidification of condensed carbon-vapor droplets, followed by gas-to-solid carbon coating to form the graphite rims. Similar core/rim particles result from the slow cooling of carbon vapor in the lab. The long-range carbon bond-order potential was used to computationally study liquid-like carbon in (1.8 g/𝐜𝐦𝟑) periodic boundary (tiled-cube supercell) and containerless (isolated cluster) settings. Relaxations via conjugate-gradient and simulatedannealing nucleation and growth simulations using molecular dynamics were done to …


Computational Studies Of Carbon Nanocluster Solidification, Chathuri C. Silva Jul 2021

Computational Studies Of Carbon Nanocluster Solidification, Chathuri C. Silva

Dissertations

A subset of micron-size meteoritic carbon particles formed in red giant atmospheres show a core-rim structure, likely condensed from a vapor phase into super-cooled carbon droplets that nucleated graphene sheets (~40Å) on randomly oriented 5-atom loops during solidification, followed by coating with a graphite rim. Similar particles form during slow cooling of carbon vapor in the lab.

Here we investigate the nucleation and growth of carbon rings and graphene sheets using density functional theory (DFT). Our objectives: (1). explore different computational techniques in DFT-VASP for various carbon structures and compare the results with literature, (2). investigate the nucleation and growth …


Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher Carr Mar 2018

Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher Carr

Dissertations

Recent efforts have demonstrated confinement in porous scaffolds at the nanoscale can alter the hydrogen sorption properties of metal hydrides, though not to an extent feasible for use in onboard hydrogen storage applications, proposing the need for a method allowing further modifications. The work presented here explores how the functionalization of nanoporous carbon scaffold surfaces with heteroatoms can modify the hydrogen sorption properties of confined metal hydrides in relation to non-functionalized scaffolds (FS). Investigations of nanoconfined LiBH4and NaAlH4indicate functionalizing the carbon scaffold surface with nitrogen can shift the activation energy of hydrogen desorption in excess of …