Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Theses/Dissertations

Muon

Articles 1 - 4 of 4

Full-Text Articles in Physics

Beam Dynamics Simulations And Systematic Studies For The Muon G-2 Experiment At Fermilab, Abel M. Lorente Campos Jan 2023

Beam Dynamics Simulations And Systematic Studies For The Muon G-2 Experiment At Fermilab, Abel M. Lorente Campos

Theses and Dissertations--Physics and Astronomy

The first results of the positive muon anomalous magnetic moment from the Muon g-2 Experiment at Fermilab differs from the Standard Model prediction by 3.3 standard deviations, with an experimental uncertainty of 0.46 ppm. Combining this result with the previous measurement from the Brookhaven National Laboratory, it sets the difference between experiment and theory at 4.2 standard deviations. The goal of the Muon g-2 Experiment at Fermilab is to increase this discrepancy to 5 standard deviations, which would require unprecedented precision in the measurements of 0.14 ppm. Of significant importance to achieving this precision, beam and spin dynamics simulations are …


Energy Integrated Ratio Analysis Of The Anomalous Precession Frequency In The Fermilab Muon G-2 Experiment, Ritwika Chakraborty Jan 2022

Energy Integrated Ratio Analysis Of The Anomalous Precession Frequency In The Fermilab Muon G-2 Experiment, Ritwika Chakraborty

Theses and Dissertations--Physics and Astronomy

The muon’s anomalous magnetic moment, aμ, provides a unique way for probing physics beyond the standard model experimentally as it gathers contributions from all the known and unknown forces and particles in nature. The theoretical prediction of aμ has been in greater than 3 σ tension with the experimental measurement since the results of the Muon g-2 Experiment at the Brookhaven National Laboratory (E-821) were published in the early 2000s with a precision of 540 ppb. To settle this tension, the new Fermilab Muon g - 2 Experiment (E-989) is currently taking data with the aim of …


An Energy-Integrated Analysis For Measuring The Anomalous Precession Frequency For The Muon G − 2 Experiment At Fermilab, Laura Kelton Jan 2022

An Energy-Integrated Analysis For Measuring The Anomalous Precession Frequency For The Muon G − 2 Experiment At Fermilab, Laura Kelton

Theses and Dissertations--Physics and Astronomy

In the search for physics beyond the Standard Model, the Muon g − 2 Experiment at Fermilab (E989) will make the most precise measurement of the anomalous magnetic moment of the muon, aμ. Improvements in precision come from both increased statistics and new techniques to significantly reduce previous systematic uncertainties. The muon aμ is determined by extracting both the anomalous spin precession frequency, ωa, and the average magnetic field sampled by the muons, B. Traditionally an energy threshold analysis method which requires reconstruction of decay positrons from the muon decay, μ+ → e+ …


A First Experimental Limit On The Relative Rates Of Muon Capture On Deuterium From The Quartet And Doublet Hyperfine Spin States Of The Μd Atom, Ray Kreswell Neely Jan 2017

A First Experimental Limit On The Relative Rates Of Muon Capture On Deuterium From The Quartet And Doublet Hyperfine Spin States Of The Μd Atom, Ray Kreswell Neely

Theses and Dissertations--Physics and Astronomy

The MuSun experiment will determine the muon capture rate on deuterium (µ− + dn + n + νµ) from the doublet hyperfine spin state, Λd, of muonic deuterium to a precision of 1.5%. Muon capture can occur from either the quartet or doublet state of the 1S orbital of the µd atom; however, the V-A nature of the process strongly suppresses the rate of capture from the quartet state, Λq. Muons in ultrapure deuterium gas may also catalyze d+d3He+n fusion through the formation …