Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers May 2023

Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers

Physics Undergraduate Honors Theses

Terahertz (THz) photoconductive antennas (PCAs) using 40nm thin-film flakes of black phosphorus (BP) and hexagonal boron nitride (hBN) have been shown computationally to be capable of THz emission comparable to those based on GaAs [2]. In this paper, I briefly describe the scientific and practical interest in THz emissions and explain what warrants research into black phosphorus as a photoconductive semiconductor in THz devices. Furthermore, I outline the basic principle of how these antennas work and mention alternative designs produced by other researchers in the past. Finally, I summarize the fabrication process of these antennas, as well as the measurements …


Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi Dec 2022

Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi

Graduate Theses and Dissertations

This work focuses on the investigation of gate-defined quantum dots in two-dimensional transition metal dichalcogenide tungsten diselenide (WSe2) as a means to unravel mesoscopic physical phenomena such as valley-contrasting physics in WSe2 flakes and its potential application as qubit, as well as realizing gate-controlled quantum dots based on elementaltellurium nanostructures which may unlock the topological nature of the host material carriers such as Weyl states in tellurium nanowires.The fabrication and characterization of gate-defined hole quantum dots in monolayer and bilayer WSe2 are reported. The gate electrodes in the device design are located above and below the WSe2 nanoflakes to accumulate …


Theoretical Investigations Of The Structural, Dynamical, Electronic, Magnetic, And Thermoelectric Properties Of Corhysi (Y = Cr, Mn) Quaternary Heusler Alloys, Abdullah Hussain Hzzazi Dec 2021

Theoretical Investigations Of The Structural, Dynamical, Electronic, Magnetic, And Thermoelectric Properties Of Corhysi (Y = Cr, Mn) Quaternary Heusler Alloys, Abdullah Hussain Hzzazi

Graduate Theses and Dissertations

Thermoelectric materials have potential properties for utilizing waste heat. The computations are used to estimate the electronic structure of CoRhYSi (Y = Cr, Mn) Quaternary Heusler alloys, as well as their elastic and magnetic characteristics. The full-potential linearized augmented plane wave is used in the calculations. The exchange-correlations are addressed using Perdew–Burke and Ernzerhof's generalized gradient approximation (GGA-PBE). With the exception of CoRhCrSi and CoRhMnSi, which are simple ferromagnets that are approximately half metallic in nature, electronic structure calculations demonstrate that these compounds have a gap in the minority states band and are obviously half-metallic ferromagnets. The magnetic moments of …