Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Self-Completeness And The Generalized Uncertainty Principle, Maximiliano Isi, Jonas Mureika, Piero Nicolini Sep 2017

Self-Completeness And The Generalized Uncertainty Principle, Maximiliano Isi, Jonas Mureika, Piero Nicolini

Jonas Mureika

The generalized uncertainty principle discloses a self-complete characteristic of gravity, namely the possibility of masking any curvature singularity behind an event horizon as a result of matter compression at the Planck scale. In this paper we extend the above reasoning in order to overcome some current limitations to the framework, including the absence of a consistent metric describing such Planck-scale black holes. We implement a minimum-size black hole in terms of the extremal configuration of a neutral non-rotating metric, which we derived by mimicking the effects of the generalized uncertainty principle via a short scale modified version of Einstein gravity. …


Sub-Planckian Black Holes And The Generalized Uncertainty Principle, Bernard Carr, Jonas R. Mureika, Piero Nicolini Sep 2017

Sub-Planckian Black Holes And The Generalized Uncertainty Principle, Bernard Carr, Jonas R. Mureika, Piero Nicolini

Jonas Mureika

The Black Hole Uncertainty Principle correspondence suggests that there could exist black holes with mass beneath the Planck scale but radius of order the Compton scale rather than Schwarzschild scale. We present a modified, self-dual Schwarzschild-like metric that reproduces desirable aspects of a variety of disparate models in the sub-Planckian limit, while remaining Schwarzschild in the large mass limit. The self-dual nature of this solution under M ↔ M−1 naturally implies a Generalized Uncertainty Principle with the linear form Δx∼1/Δp+Δp. We also demonstrate a natural dimensional reduction feature, in that the gravitational radius and thermodynamics of sub-Planckian objects resemble that …


Holographic Renormalization Of Asymptotically Lifshitz Spacetimes, Robert Mcnees, Robert Mann Jan 2016

Holographic Renormalization Of Asymptotically Lifshitz Spacetimes, Robert Mcnees, Robert Mann

Robert A McNees IV

A variational formulation is given for a theory of gravity coupled to a massive vector in four dimensions, with Asymptotically Lifshitz boundary conditions on the fields. For theories with critical exponent z=2 we obtain a well-defined variational principle by explicitly constructing two actions with local boundary counterterms. As part of our analysis we obtain solutions of these theories on a neighborhood of spatial infinity, study the asymptotic symmetries, and consider different definitions of the boundary stress tensor and associated charges. A constraint on the boundary data for the fields figures prominently in one of our formulations, and in that case …


Black Holes In The Conical Ensemble, Robert Mcnees, Daniel Grumiller Jan 2016

Black Holes In The Conical Ensemble, Robert Mcnees, Daniel Grumiller

Robert A McNees IV

We consider black holes in an “unsuitable box”: a finite cavity coupled to a thermal reservoir at a temperature different than the black hole’s Hawking temperature. These black holes are described by metrics that are continuous but not differentiable due to a conical singularity at the horizon. We include them in the Euclidean path integral sum over configurations, and analyze the effect this has on black hole thermodynamics in the canonical ensemble. Black holes with a small deficit (or surplus) angle may have a smaller internal energy or larger density of states than the nearby smooth black hole, but they …


Holographic Renormalization Of Asymptotically Lifshitz Spacetimes, Robert Mcnees, Robert Mann Sep 2011

Holographic Renormalization Of Asymptotically Lifshitz Spacetimes, Robert Mcnees, Robert Mann

Robert A McNees IV

A variational formulation is given for a theory of gravity coupled to a massive vector in four dimensions, with Asymptotically Lifshitz boundary conditions on the fields. For theories with critical exponent z = 2 we obtain a well-defined variational principle by explicitly constructing two actions with local boundary counterterms. As part of our analysis we obtain solutions of these theories on a neighborhood of spatial infinity, study the asymptotic symmetries, and consider different definitions of the boundary stress tensor and associated charges. A constraint on the boundary data for the fields figures prominently in one of our formulations, and in …