Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

The First Ten Months Of Investigation Of Gravity Waves And Temperature Variability Over The Andes, Jonathan Pugmire, Neal Criddle, Michael J. Taylor, P. D. Pautet, Yucheng Zhao Oct 2014

The First Ten Months Of Investigation Of Gravity Waves And Temperature Variability Over The Andes, Jonathan Pugmire, Neal Criddle, Michael J. Taylor, P. D. Pautet, Yucheng Zhao

Jonathan Pugmire

The Andes region is an excellent natural laboratory for investigating gravity wave influences on the Upper Mesospheric and Lower Thermospheric (MLT) dynamics. The instrument suite that comprised the very successful Maui-MALT program was recently re-located to a new Andes Lidar Observatory (ALO) located at Cerro Pachon, Chile to obtain in-depth seasonal measurements of MLT dynamics over the Andes mountains. As part of the instrument set the Utah State University CEDAR Mesospheric Temperature Mapper (MTM) has operated continuously since August 2009 measuring the near infrared OH(6,2) band and the O2(0,1) Atmospheric band intensity and temperature perturbations. This poster focuses on an …


Mesospheric Temperature Variability And Seasonal Characteristics Over The Andes, Jonathan Pugmire, Yucheng Zhao, Michael Taylor, P Pautet Oct 2014

Mesospheric Temperature Variability And Seasonal Characteristics Over The Andes, Jonathan Pugmire, Yucheng Zhao, Michael Taylor, P Pautet

Jonathan Pugmire

The Utah State University CEDAR Mesospheric Temperature Mapper (MTM) is a high-quality CCD imager capable of remote sensing faint optical emissions from the night sky to determine mesospheric temperature and its variability at an altitude of ~87 km. The MTM was operated at the new Andes Lidar Observatory (ALO)located at Cerro Pachon, Chile (30.2° S, 70.7° W) since August 2009 to investigate the seasonal characteristic of the mesopause at mid-latitudes. Measurement were made alongside a powerful lidar capable of height sounding the mesosphere. In this study, the MTM data have been analyzed to determine night to night variability and seasonal …


Intra-Annual Comparison Of Mesospheric Gravity Waves Over Halley And Rothera Stations, Antarctica, Jonathan Pugmire, Michael J. Taylor, K. Nielsen, A. Wall, J. Thompson, P. D. Pautet Oct 2014

Intra-Annual Comparison Of Mesospheric Gravity Waves Over Halley And Rothera Stations, Antarctica, Jonathan Pugmire, Michael J. Taylor, K. Nielsen, A. Wall, J. Thompson, P. D. Pautet

Jonathan Pugmire

No abstract provided.


New Measurements Of Mcmurdo Gravity Wave Parameters, Jonathan R. Pugmire, Michael J. Taylor, P Dominique Pautet Oct 2014

New Measurements Of Mcmurdo Gravity Wave Parameters, Jonathan R. Pugmire, Michael J. Taylor, P Dominique Pautet

Jonathan Pugmire

The ANtarctic Gravity Wave Instrument Network (ANGWIN) is an NSF sponsored international program designed to develop and utilize a network of gravity wave observatories using existing and new instrumentation operated at several established research stations around the continent. The primary goal is to better understand and quantify large-scale gravity wave climatology and their effects on the upper atmosphere over Antarctica. ANGWIN currently comprises research measurements from five nations (U.S., U.K., Australia, Japan, and Brazil) at seven international stations. Utah State University’s Atmospheric Imaging Lab operates all-sky infrared and CCD imagers and an Advanced Mesospheric Temperature Mapper (AMTM) imager at several …