Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Physics

Quantitative Mid-Infrared Spectra Of Allene And Propyne From Room To High Temperatures, Et. Es-Sebbar, A. Jolly, Y. Benilan, A. Farooq Sep 2014

Quantitative Mid-Infrared Spectra Of Allene And Propyne From Room To High Temperatures, Et. Es-Sebbar, A. Jolly, Y. Benilan, A. Farooq

Dr. Et-touhami Es-sebbar

Allene (a-C3H4; CH2CCH2) and propyne (p-C3H4; CH3C2H) have attracted much interest because of their relevance to the photochemistry in astrophysical environments as well as in combustion processes. Both allene and propyne have strong absorption in the infrared region. In the present work, infrared spectra of a-C3H4 and p-C3H4 are measured in the gas phase at temperatures ranging from 296 to 510 K. The spectra are measured over the 580–3400 cm−1 spectral region at resolutions of 0.08 and 0.25 cm−1 using Fourier Transform Infrared spectroscopy. Absolute integrated intensities of the main infrared bands are determined at room temperature and compared with …


Rhodizonic Acid On Noble Metals: Surface Reactivity And Coordination Chemistry, Donna A. Kunkel, James Hooper, Scott Simpson, Sumit Beniwal, Katie L. Morrow, Douglas C. Smith, Kimberly Cousins, Stephen Ducharme, Eva Zurek, Axel Enders Sep 2014

Rhodizonic Acid On Noble Metals: Surface Reactivity And Coordination Chemistry, Donna A. Kunkel, James Hooper, Scott Simpson, Sumit Beniwal, Katie L. Morrow, Douglas C. Smith, Kimberly Cousins, Stephen Ducharme, Eva Zurek, Axel Enders

Axel Enders

A study of the two-dimensional crystallization of rhodizonic acid on the crystalline surfaces of gold and copper is presented. Rhodizonic acid, a cyclic oxocarbon related to the ferroelectric croconic acid and the antiferroelectric squaric acid, has not been synthesized in bulk crystalline form yet. Capitalizing on surface-assisted molecular self-assembly, a two-dimensional analogue to the well-known solution-based coordination chemistry, two-dimensional structures of rhodizonic acid were stabilized under ultrahigh vacuum on Au(111) and Cu(111) surfaces. Scanning tunneling microscopy, coupled with first-principles calculations, reveals that on the less reactive Au surface, extended two-dimensional islands of rhodizonic acid are formed, in which the molecules …


Computational Study Of The Hydration Of Sulfuric Acid Dimers: Implications For Acid Dissociation And Aerosol Formation, Berhane Temelso, Thuong Ngoc Phan, George C. Shields Sep 2014

Computational Study Of The Hydration Of Sulfuric Acid Dimers: Implications For Acid Dissociation And Aerosol Formation, Berhane Temelso, Thuong Ngoc Phan, George C. Shields

Berhane Temelso

We have investigated the thermodynamics of sulfuric acid dimer hydration using ab initio quantum mechanical methods. For (H2SO4)2(H2O)n where n = 0−6, we employed high-level ab initio calculations to locate the most stable minima for each cluster size. The results presented herein yield a detailed understanding of the first deprotonation of sulfuric acid as a function of temperature for a system consisting of two sulfuric acid molecules and up to six waters. At 0 K, a cluster of two sulfuric acid molecules and one water remains undissociated. Addition of a second water begins the deprotonation of the first sulfuric acid …


Intensities, Broadening And Narrowing Parameters In The Ν3 Band Of Methane, Et-Touhami Es-Sebbar, Aamir Farooq Aug 2014

Intensities, Broadening And Narrowing Parameters In The Ν3 Band Of Methane, Et-Touhami Es-Sebbar, Aamir Farooq

Dr. Et-touhami Es-sebbar

The P-branch of methane׳s ν3 band is probed to carry out an extensive study of the 2905–2908 cm−1 infrared spectral region. Absolute line intensities as well as N2-, O2-, H2-, He-, Ar- and CO2-broadening coefficients are determined for nine transitions at room temperature. Narrowing parameters due to the Dicke effect have also been investigated. A narrow emission line-width (~0.0001 cm−1) difference-frequency-generation (DFG) laser system is used as the tunable light source. To retrieve the CH4 spectroscopic parameters, Voigt and Galatry profiles were used to simulate the measured line shape of the individual transitions.


Atomistic Simulations Of The Fusion-Plasma Material Interface, Mostafa Jon Dadras Jul 2014

Atomistic Simulations Of The Fusion-Plasma Material Interface, Mostafa Jon Dadras

Jonny Dadras

A key issue for the successful performance of current and future fusion reactors is understanding chemical and physical processes at the Plasma Material Interface (PMI). The material surfaces may be bombarded by plasma particles in a range of impact energies (1 eV - a few keV) and kept at a range of temperatures (300 - 1000 K). The dominant processes at the PMI are reflection and retention of impacting particles and sputtering (chemical and physical). Sputtering leads to surface erosion and pollution of the plasma, both of which degrade reactor performance. Retention influences the recycling of the plasma, and in …


Absorption Cross-Section Measurements Of Methane, Ethane, Ethylene And Methanol At High Temperatures, Majed Alrefae, Et-Touhami Es-Sebbar, Aamir Farooq Jul 2014

Absorption Cross-Section Measurements Of Methane, Ethane, Ethylene And Methanol At High Temperatures, Majed Alrefae, Et-Touhami Es-Sebbar, Aamir Farooq

Dr. Et-touhami Es-sebbar

Mid-IR absorption cross-sections are measured for methane, ethane, ethylene and methanol over 2800–3400 cm−1 (2.9–3.6 μm) spectral region. Measurements are carried out using a Fourier-Transform-Infrared (FTIR) spectrometer with temperatures ranging 296–1100 K and pressures near atmospheric. As temperature increases, the peak cross-sections decrease but the wings of the bands increase as higher rotational lines appear. Integrated band intensity is also calculated over the measured spectral region and is found to be a very weak function of temperature. The absorption cross-sections of the relatively small fuels studied here show dependence on the bath gas. This effect is investigated by studying the …


Measurements Of Linestrengths, N2-, Ar-, He- And Self-Broadening Coefficients Of Acetylene In The Ν4+Ν5 Combination Band Using A Cw Quantum Cascade Laser, Muhammad Bilal Sajid, Et-Touhami Es-Sebbar, Aamir Farooq Jun 2014

Measurements Of Linestrengths, N2-, Ar-, He- And Self-Broadening Coefficients Of Acetylene In The Ν4+Ν5 Combination Band Using A Cw Quantum Cascade Laser, Muhammad Bilal Sajid, Et-Touhami Es-Sebbar, Aamir Farooq

Dr. Et-touhami Es-sebbar

Linestrengths, N2-, Ar-, He- and self-broadening coefficients of acetylene have been measured at 296 K in the P branch of the ν4+ν5 combination band for 25 rotational transitions. The effect of gas temperature is studied over 296–683 K for five transitions to allow the determination of the temperature dependent exponent n for N2- and Ar-broadening coefficients. These measurements were performed using a continuous-wave quantum cascade laser (cw-QCL) operating over 1253–1310 cm−1. Spectroscopic parameters were obtained by fitting absorption spectra using Voigt, Galatry and Rautian profiles. Linestrength and broadening results are compared with previous studies available in literature for the ν4+ν5 …


Transport Properties Of The La1−Xcaxmno3 (0.5 ≤ X < 1), H. Zhou, R. Zheng, G. Li, S. Feng, Xiaojuan Fan, X. Lia Jun 2014

Transport Properties Of The La1−Xcaxmno3 (0.5 ≤ X < 1), H. Zhou, R. Zheng, G. Li, S. Feng, Xiaojuan Fan, X. Lia

Xiaojuan Fan

The transport properties of the La1−xCaxMnO3 (0.5 ≤ x < 1) system in magnetic fields up to 14 T were studied. We found that the relationship between the charge ordering temperature TCO and Mn4+ content nMn4+ obeys the formula TCO/Tmax = 1−a(nMn4+ −n0)2, here n0 and a are constants and Tmax is the maximum of TCO. For x = 0.65, TCO arrives at the maximum value of 249.5 K in zero magnetic field, while the charge ordered (CO) state is most stable around x = 0.75. For x = 0.5 when H < 6 T the resistivity displays Mott’s variable-range hopping (VRH) behavior, when 6 < H < 12 T it is suggested that two kinds of conduction mechanism, i.e., VRH and magnetic polarons, coexist in the material, and when H > 12 T the resistivity shows metallic-like behavior and the transport mechanism is attributed to coexistence of magnetic polarons and free carriers. For x = 0.95, the conduction mechanism accords with the coexistence of VRH and magnetic polarons.


Comparative Study Of In Situ N2 Rotational Raman Spectroscopy Methods For Probing Energy Thermalisation Processes During Spin-Exchange Optical Pumping, Hayley Newton, Laura L. Walkup, Nicholas Whiting, Linda West, James Carriere, Frank Havermeyer, Lawrence Ho, Peter Morris, Boyd M. Goodson, Michael J. Barlow Apr 2014

Comparative Study Of In Situ N2 Rotational Raman Spectroscopy Methods For Probing Energy Thermalisation Processes During Spin-Exchange Optical Pumping, Hayley Newton, Laura L. Walkup, Nicholas Whiting, Linda West, James Carriere, Frank Havermeyer, Lawrence Ho, Peter Morris, Boyd M. Goodson, Michael J. Barlow

Nicholas Whiting

Spin-exchange optical pumping (SEOP) has been widely used to produce enhancements in nuclear spin polarisation for hyperpolarised noble gases. However, some key fundamental physical processes underlying SEOP remain poorly understood, particularly in regards to how pump laser energy absorbed during SEOP is thermalised, distributed and dissipated. This study uses in situ ultra-low frequency Raman spectroscopy to probe rotational temperatures of nitrogen buffer gas during optical pumping under conditions of high resonant laser flux and binary Xe/N2 gas mixtures. We compare two methods of collecting the Raman scattering signal from the SEOP cell: a conventional orthogonal arrangement combining intrinsic spatial filtering …


The Effect Of Phase Separation On Charge Ordering State In La12xcaxmno3 (X ¼ 1/2, 2/3, And 3/4), H. D. Zhou, G. Li, S. J. Feng, Y. Liu, T. Qian, Xiaojuan Fan, X. G. Li Feb 2014

The Effect Of Phase Separation On Charge Ordering State In La12xcaxmno3 (X ¼ 1/2, 2/3, And 3/4), H. D. Zhou, G. Li, S. J. Feng, Y. Liu, T. Qian, Xiaojuan Fan, X. G. Li

Xiaojuan Fan

The magnetic phase separation characteristics are found in manganese perovskite La1/3Ca2/3MnO3 by electron spin resonance (ESR) and magnetization measurements. An extra resonance signal observed in ESR spectra just above the charge ordering (CO) temperature TCO provides strong evidence for the existence of ferromagnetic (FM) clusters near the CO state. The investigation of the resistivity of La1-xCaxMnO3 (x=1/2, 2/3, and 3/4) in different magnetic fields up to 14 T shows that the effect of magnetic fields on CO state decreases with increasing x. Our results indicate that the percolative characteristics of the phase separation between FM clusters and CO state for …


Modeling The High-Speed Switching Of Far-Infrared Radiation By Photoionization In A Semiconductor, Thomas E. Wilson Feb 2014

Modeling The High-Speed Switching Of Far-Infrared Radiation By Photoionization In A Semiconductor, Thomas E. Wilson

Thomas E. Wilson

Data from an earlier study [T. Vogel et al., Appl. Opt. 31, 329 (1992)] on the subnanosecond switching of 119-μm radiation in high-resistivity silicon by pulsed UV laser radiation, is compared with a refined one-dimensional numerical multilayer model accounting for the generation, recombination, and diffusion of the free carriers on the resulting far-infrared optical properties of the silicon. The inclusion of recent measurements for carrier-density and temperature-dependent transport parameters leads to improved agreement between experiment and theory.


Evidence For The Generation Of Coherent Longitudinal Acoustic Phonons Through The Resonant Absorption Of Pulsed Far-Infrared Laser Radiation In Silicon Doping Superlattices, Thomas E. Wilson Feb 2014

Evidence For The Generation Of Coherent Longitudinal Acoustic Phonons Through The Resonant Absorption Of Pulsed Far-Infrared Laser Radiation In Silicon Doping Superlattices, Thomas E. Wilson

Thomas E. Wilson

We report the first experimental evidence for the direct excitation of coherent high-frequency acoustic phonons in semiconducting doping superstructures by electromagnetic fields of the same frequency. Nanosecond pulses of acoustic phonons have been detected by a superconducting bolometer at the appropriate time-of-flight across a (100) silicon substrate for ballistic longitudinal phonons when a silicon doping superlattice is illuminated with grating-coupled nanosecond-pulsed 246-GHz laser radiation with power density of ∼1 kW/mm2. The absorbed phonon power density in the microbolometer is estimated to be ∼ 10/Wmm2, in agreement with theory. The phonon pulse duration matches the laser pulse duration. The absence of …


Superlattice Ultrasonic Generation, Thomas E. Wilson, M. Oehme, E. Kasper, H-J. L. Gossmann Feb 2014

Superlattice Ultrasonic Generation, Thomas E. Wilson, M. Oehme, E. Kasper, H-J. L. Gossmann

Thomas E. Wilson

We report the first experimental evidence for the resonant excitation of coherent high-frequency acoustic phonons in semiconducting doping superstructures by far-infrared laser radiation. After a grating-coupled delta-doped silicon doping superlattice is illuminated with ~1 kW/mm2 nanosecond-pulsed 246 GHz laser radiation, a delayed nanosecond pulse is detected by a superconducting bolometer at a time corresponding to the appropriate time-of-flight for ballistic longitudinal acoustic phonons across the (100) silicon substrate. The absorbed phonon power density in the microbolometer is observed to be ~10 μW/mm2, in agreement with theory. The phonon pulse duration also matches the laser pulse duration. The absence of any …


Progress On: “Coherent Terahertz Acoustic Phonon Scattering: Novel Diagnostic For Erosion In Plasma Thruster Discharge Chamber Walls", Thomas E. Wilson, Iain D. Boyd Feb 2014

Progress On: “Coherent Terahertz Acoustic Phonon Scattering: Novel Diagnostic For Erosion In Plasma Thruster Discharge Chamber Walls", Thomas E. Wilson, Iain D. Boyd

Thomas E. Wilson

The study is based on the success in obtaining the first experimental evidence for the direct excitation of coherent nanosecond-pulsed high-frequency acoustic phonons in semiconducting doping superstructures by electromagnetic fields of the same frequency. Acoustic phonons are detected by a superconducting bolometer, with nanosecond resolution, at the appropriate time-of-flight across a (100) silicon substrate for ballistic longitudinal phonons when a silicon delta-doped doping superlattice is illuminated with grating-coupled nanosecond-pulsed 246-GHz laser radiation with an approximate power density of 1 kW/mm2. The absorbed phonon power density in the bolometer detector is estimated to be 10 μW/mm2, in agreement with theory. The …


Fabrication Of Robust Superconducting Granular Aluminium/Palladium Bilayer Microbolometers With Sub-Nanosecond Response, Thomas E. Wilson Feb 2014

Fabrication Of Robust Superconducting Granular Aluminium/Palladium Bilayer Microbolometers With Sub-Nanosecond Response, Thomas E. Wilson

Thomas E. Wilson

We provide a convenient recipe for fabricating reliable superconducting microbolometers as acoustic phonon detectors with sub-nanosecond response, using imagereversal optical lithography and dc-magnetron sputtering, and our recipe requires no chemical or plasma etching. Our approach solves the traditional problem for granular aluminium bolometers of unreliable (i.e., non-Ohmic) electrical contacts by sequentially sputtering the granular aluminium film and then a palladium capping layer. We use dc calibration data, the method of Danilchenko et al. [1], and direct nanosecond-pulsed photoexcitation to obtain the microbolometer’s characteristic current, thermal conductance, characteristic relaxation time, and heat capacity. We also demonstrate the use of the deconvolution …


Xena: An Automated 'Open-Source' 129xe Hyperpolarizer For Clinical Use, Panayiotis Nikolaou, Aaron M. Coffey, Laura L. Walkup, Brogan M. Gust, Nicholas Whiting, Hayley Newton, Iga Muradyan, Mikayel Dabaghyan, Kaili Ranta, Gregory D. Moroz, Matthew S. Rosen, Samuel Patz, Michael J. Barlow, Eduard Y. Chekmenev, Boyd M. Goodson Dec 2013

Xena: An Automated 'Open-Source' 129xe Hyperpolarizer For Clinical Use, Panayiotis Nikolaou, Aaron M. Coffey, Laura L. Walkup, Brogan M. Gust, Nicholas Whiting, Hayley Newton, Iga Muradyan, Mikayel Dabaghyan, Kaili Ranta, Gregory D. Moroz, Matthew S. Rosen, Samuel Patz, Michael J. Barlow, Eduard Y. Chekmenev, Boyd M. Goodson

Nicholas Whiting

Here we provide a full report on the construction, components, and capabilities of our consortium’s “opensource”
large-scale (~1 L/h) 129Xe hyperpolarizer for clinical, pre-clinical, and materials NMR/MRI (Nikolaou et al., Proc. Natl. Acad. Sci. USA, 110, 14150 (2013)). The ‘hyperpolarizer’ is automated and built mostly of off-the-shelf components; moreover, it is designed to be cost-effective and installed in both research laboratories and clinical settings with materials costing less than $125,000. The device runs in the xenon-rich regime (up to 1800 Torr Xe in 0.5 L) in either stopped-flow or single-batch mode—making cryo-collection of the hyperpolarized gas unnecessary for many applications. …


Characterization Of Large Area, Thick, And Segmented Silicon Detectors For Neutron Β-Decay Experiments, Americo Salas-Bacci, Patrick L. Mcgaughey, Stephan Baeßler, Leah Broussard, Mark F. Makela, J. Mirabal, Robert W. Pattie, Dinko Počanić, Sky K.L. Sjue, Seppo I. Penttila, Wesley S. Wilburn, Albert R. Young, B.A. Zeck, Zhehui Wang Dec 2013

Characterization Of Large Area, Thick, And Segmented Silicon Detectors For Neutron Β-Decay Experiments, Americo Salas-Bacci, Patrick L. Mcgaughey, Stephan Baeßler, Leah Broussard, Mark F. Makela, J. Mirabal, Robert W. Pattie, Dinko Počanić, Sky K.L. Sjue, Seppo I. Penttila, Wesley S. Wilburn, Albert R. Young, B.A. Zeck, Zhehui Wang

Robert W. Pattie Jr.

The “Nab” and “UCNB” collaborations have proposed to measure the correlation parameters in neutron β-decay at Oak Ridge and Los Alamos National Laboratory, using a novel detector design. Two large area, thick, hexagonal-segmented silicon detectors containing 127 pixels per detector will be used to detect the proton and electron from neutron decay. Both silicon detectors are connected by magnetic field lines of a few Tesla field strength, and set on an electrostatic potential, such that protons can be accelerated up to 30 keV in order to be detected. Characteristics of the detector response to low energy conversion electrons and protons from …


Standoff Methods For The Detection Of Threat Agents: A Review Of Several Promising Laser-Based Techniques, J. Bruce Johnson, Susan D. Allen, Jonathan Merten, Lewis Johnson, Daniel Pinkham, Scott Reeve Dec 2013

Standoff Methods For The Detection Of Threat Agents: A Review Of Several Promising Laser-Based Techniques, J. Bruce Johnson, Susan D. Allen, Jonathan Merten, Lewis Johnson, Daniel Pinkham, Scott Reeve

Scott Reeve

No abstract provided.