Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

High Consequence Scenarios For North Korean Atmospheric Nuclear Tests With Policy Recommendations For The U.S. Government, Thomas S. Popik, Jordan T. Kearns, George H. Baker Iii, Henry F. Cooper, William R. Harris May 2018

High Consequence Scenarios For North Korean Atmospheric Nuclear Tests With Policy Recommendations For The U.S. Government, Thomas S. Popik, Jordan T. Kearns, George H. Baker Iii, Henry F. Cooper, William R. Harris

George H Baker

The government of North Korea has declared high-altitude EMP-capability to be a “strategic goal” and has also threatened an atmospheric test of a hydrogen bomb. Atmospheric nuclear tests have the potential to cripple satellites and the undersea cable networks critical to communication, and navigation necessary for trans-Pacific trade among the U.S., China, and other nations. When a nuclear warhead is detonated at high altitude, a series of electromagnetic pulses radiate downward within the line of sight of the blast. These pulses can disable equipment with miniature electronics and long conductors. Electric grid controls and transmission systems are especially vulnerable. Intense …


Evolution And Rationale For United States Department Of Defense Electromagnetic Pulse Protection Standard, George H. Baker Iii Nov 2017

Evolution And Rationale For United States Department Of Defense Electromagnetic Pulse Protection Standard, George H. Baker Iii

George H Baker

The United States (US) Department of Defense (DoD) Electromagnetic Pulse (EMP) protection standard offers a solid basis for protecting commercial communication, data, and control facilities. Because of the standard’s shielded barrier and test requirements, it is not surprising that there is a strong temptation within industry and government to dismiss the MIL-STD 188-125 approach in favor of less rigorous protection methods. It is important to understand that US DoD EMP protection standard for fixed facilities, MIL-STD-188-125, reflects an evolution by trial and error that spanned a period of decades beginning with the acquisition of the Minuteman Missile System in the …


Proposal For A Dod Combined Battlefield Electromagnetic Environmental Effects (E3) Initiative, George H. Baker Iii Nov 2017

Proposal For A Dod Combined Battlefield Electromagnetic Environmental Effects (E3) Initiative, George H. Baker Iii

George H Baker

The presentation emphasizes the growing importance of electromagnetic survivability and compatibility. Operation Desert Storm demonstrated the clear military advantage provided by sophisticated electronic weapon and communication systems. In addition, the offensive tactic of taking out the enemy's eyes and ears during the air war paid off, giving our military decisive air superiority. The lessons for the future are clear. High-tech electronics now so dominates the battlefield that the outcome of future conflicts could well be decided by electronics attrition rather than human casualties. Our Desert Storm experience thus accentuates the importance of guaranteeing that our electronic systems will not be …


Testimony Of Dr. George H. Baker, Senior Advisor To The Congressional Emp Commission, George H. Baker Iii Nov 2017

Testimony Of Dr. George H. Baker, Senior Advisor To The Congressional Emp Commission, George H. Baker Iii

George H Baker

This is the script of testimony before the Federal Energy Regulatory Commission. It offers a vision for a future in which our electric power systems will be able to operate through or quickly recover from catastrophic failure due to electromagnetic pulse (EMP), cyber, and physical attacks. The scope of the term ‘EMP’ used in this testimony includes both naturally occurring solar storms and the more energetic man-made EMP hazards. The vision has been discussed with members of the electric power industry, and prominent EMP/cyber/physical protection advocates who find it to be supportable and actionable. The nature of EMP, cyber, and …


Emp And Geomagnetic Storm Protection Of Critical Infrastructure, George H. Baker Iii May 2012

Emp And Geomagnetic Storm Protection Of Critical Infrastructure, George H. Baker Iii

George H Baker

EMP and solar storm wide geographic coverage and ubiquitous system effects beg the question of “Where to begin?” with protection efforts. Thus, in addressing these “wide area electromagnetic (EM) effects,” we must be clever in deciding where to invest limited resources. Based on simple risk analysis, the electric power and communication infrastructures emerge as the highest priority for EM protection. Programs focused on these highest risk infrastructures will go a long way in lessoning societal impact. Given the national scope of the effects, such programs must be coordinated at the national level but implemented at local level. Because wide-area EM …


Risk-Based Critical Infrastructure Priorities For Emp And Solar Storms, George H. Baker Iii Oct 2011

Risk-Based Critical Infrastructure Priorities For Emp And Solar Storms, George H. Baker Iii

George H Baker

Two electromagnetic phenomena have the potential to create continental-scale disasters. The first, nuclear electromagnetic pulse (EMP), results from a nuclear detonation high above the tropopause. The second, a major solar storm, or "solar tsunami" occurs naturally when an intense wave of charged particles from the sun perturbs the earth's magnetic field. Both phenomena can debilitate electrical and electronic systems necessary for the operation of infrastructure systems and services. One reason why a U.S. protection program has yet to be initiated is that policy makers continue to wrestle with the question of where to begin, given the Department of Homeland Security’s …


Risk-Based Critical Infrastructure Protection Priorities For Emp And Solar Storms, George H. Baker Iii Sep 2011

Risk-Based Critical Infrastructure Protection Priorities For Emp And Solar Storms, George H. Baker Iii

George H Baker

The Commission to Assess the Threat to the United States from Electromagnetic Pulse Attack has provided a compelling case for protecting civilian infrastructure against the effects of EMP. As with protecting infrastructure against any hazard, it will be important to take a risk-based priority approach for EMP, recognizing that it is fiscally impracticable to protect everything. In this regard, EMP is particularly challenging in that it interferes with electrical and electronic data, control, transmission, and communication systems organic to nearly all infrastructures in a simultaneous and wide-scale manner. And, for nuclear burst altitudes of 100s of kilometers, the exposed geography …


Cascading Infrastructure Failures: Avoidance And Response, George H. Baker, Cheryl J. Elliott Dec 2007

Cascading Infrastructure Failures: Avoidance And Response, George H. Baker, Cheryl J. Elliott

George H Baker

No critical infrastructure is self-sufficient. The complexity inherent in the interdependent nature of infrastructure systems complicates planning and preparedness for system failures. Recent wide-scale disruption of infrastructure on the Gulf Coast due to weather, and in the Northeast due to electric power network failures, dramatically illustrate the problems associated with mitigating cascading effects and responding to cascading infrastructure failures once they have occurred.

The major challenge associated with preparedness for cascading failures is that they transcend system, corporate, and political boundaries and necessitate coordination among multiple, disparate experts and authorities. This symposium brought together concerned communities including government and industry …


Mil-Std-188-125-2, High-Altitude Emp Protection For Transportable Systems Mar 1999

Mil-Std-188-125-2, High-Altitude Emp Protection For Transportable Systems

George H Baker

This standard establishes minimum requirements and design objectives for high-altitude electromagnetic pulse (HEMP) hardening of transportable1 ground-based systems that perform critical, time-urgent command, control, communications, computer, and intelligence (C4I) missions. Systems required to fully comply with the provisions of the standard will be designated by the Joint Chiefs of Staff, a Military Department Headquarters, or a Major Command.

The standard prescribes minimum performance requirements for low-risk protection from mission-aborting damage or upset due to HEMP threat environments. The standard also addresses minimum testing requirements for demonstrating that prescribed performance has been achieved and for verifying that the installed protection measures …