Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

PDF

Angle-resolved photoemission

Bernardo Barbiellini

Articles 1 - 1 of 1

Full-Text Articles in Physics

Electronic Structure Of The Metallic Ground State Of La2−2xsr1+2xmn2o7 For X≈0.59 And Comparison With X=0.36,0.38 Compounds As Revealed By Angle-Resolved Photoemission, Z. Sun, J. F. Douglas, Q. Wang, D. S. Dessau, A. V. Fedorov, H. Lin, S. Sahrakorpi, B. Barbiellini, R. S. Markiewicz, A. Bansil, H. Zheng, J. F. Mitchell Apr 2012

Electronic Structure Of The Metallic Ground State Of La2−2xsr1+2xmn2o7 For X≈0.59 And Comparison With X=0.36,0.38 Compounds As Revealed By Angle-Resolved Photoemission, Z. Sun, J. F. Douglas, Q. Wang, D. S. Dessau, A. V. Fedorov, H. Lin, S. Sahrakorpi, B. Barbiellini, R. S. Markiewicz, A. Bansil, H. Zheng, J. F. Mitchell

Bernardo Barbiellini

Using angle-resolved photoemission spectroscopy, we present the electronic structure of the metallic ground state of La₂₋₂ₓSr₁₊₂ₓMn₂O₇ (x≈0.59) and interpret the results in terms of first-principles band-structure computations, of which the generalized gradient approximation yields the best agreement with the experimental data. No bilayer-split bands are found in this compound, indicating the near degeneracy of electronic states in the neighboring MnO₂ layers due to its A-type antiferromagnetic structure. The d₃z2₋r2 states near the zone center were not observed, which is also consistent with its A-type antiferromagnetic structure. Near the Fermi level, a kink in the dispersion reveals an important electron-phonon many-body …