Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

PDF

Engineering

Nanoparticles

Articles 1 - 4 of 4

Full-Text Articles in Physics

Nanoparticle Plasmonics: Going Practical With Transition Metal Nitrides, U. Guler, V. M. Shalaev, A. Boltasseva Apr 2015

Nanoparticle Plasmonics: Going Practical With Transition Metal Nitrides, U. Guler, V. M. Shalaev, A. Boltasseva

U. Guler

Promising designs and experimental realizations of devices with unusual properties in the field of plasmonics have attracted a great deal of attention over the past few decades. However, the high expectations for realized technology products have not been met so far. The main complication is the absence of robust, high performance, low cost plasmonic materials that can be easily integrated into already established technologies such as microelectronics. This review provides a brief discussion on alternative plasmonic materials for localized surface plasmon applications and focuses on transition metal nitrides, in particular, titanium nitride, which has recently been shown to be a …


Real-Time Mri-Guided Catheter Tracking Using Hyperpolarized Silicon Particles, Nicholas Whiting, Jingzhe Hu, Jay V. Shah, Maja C. Cassidy, Erik Cressman, Niki Zacharias Millward, David G. Menter, Charles M. Marcus, Pratip K. Bhattacharya Jan 2015

Real-Time Mri-Guided Catheter Tracking Using Hyperpolarized Silicon Particles, Nicholas Whiting, Jingzhe Hu, Jay V. Shah, Maja C. Cassidy, Erik Cressman, Niki Zacharias Millward, David G. Menter, Charles M. Marcus, Pratip K. Bhattacharya

Nicholas Whiting

Visualizing the movement of angiocatheters during endovascular interventions is typically accomplished using x-ray fluoroscopy. There are many potential advantages to developing magnetic resonance imaging-based approaches that will allow three-dimensional imaging of the tissue/vasculature interface while monitoring other physiologically-relevant criteria, without exposing the patient or clinician team to ionizing radiation. Here we introduce a proof-of-concept development of a magnetic resonance imaging-guided catheter tracking method that utilizes hyperpolarized silicon particles. The increased signal of the silicon particles is generated via low-temperature, solid-state dynamic nuclear polarization, and the particles retain their enhanced signal for ≥40 minutes—allowing imaging experiments over extended time durations. The …


A Benchmark Study On The Thermal Conductivity Of Nanofluids, Jacopo Buongiomo, David C. Venerus, Naveen Prabhat, Thomas Mckrell, Jessica Townsend, Rebecca Christianson, Yuriv V. Tolmachev, Pawel Keblinski, Lin-Wen Hu, Jorge L. Alvarado, In Cheol Bang, Sandra W. Bishnoi, Marco Bonetti, Anselmo Cecere, Yun Chang, Gang Chen, Haisheng Chen, Sung Jae Chung, Minking K. Chyu, Sarit K. Das, Roberto Di Paola, Yulong Ding, Frank Dubois, Grzegorz Dzido, Jacob Eapen, Denis Funfschilling, Quentin Galand, Jinwei Gao, Patricia E. Gharagozloo, Kenneth E. Goodson, Jorge Gustavo Gutierrez, Haiping Hong, Mark Horton, Kyo Sik Hwang, Carlo S. Iorio, Seok Pil Jang, Andrzej B. Jarzebski, Yiran Jiang, Stephan Kabelac, Liwen Jin, Aravind Kamath, Chongyoup Kim, Ji-Hyun Kim, Seokwon Kim, Seung Hyun Lee, Kai Choong Leong, Indranil Manna, Rui Ni, Hrishikesh E. Patel, Cecil Reynaud, Raffaele Savino, Pawan K. Singh, Pengxiang Song, Thirumalachari Sundararajan, Alekzandr N. Turanov, Stefan Van Vaerenbergh, Dongsheng Wen, Sanjeeva Witharana, Chun Yang, Wei-Hsun Yeh, Xiao-Zheng Zhao, Sheng-Qi Zhou Jun 2011

A Benchmark Study On The Thermal Conductivity Of Nanofluids, Jacopo Buongiomo, David C. Venerus, Naveen Prabhat, Thomas Mckrell, Jessica Townsend, Rebecca Christianson, Yuriv V. Tolmachev, Pawel Keblinski, Lin-Wen Hu, Jorge L. Alvarado, In Cheol Bang, Sandra W. Bishnoi, Marco Bonetti, Anselmo Cecere, Yun Chang, Gang Chen, Haisheng Chen, Sung Jae Chung, Minking K. Chyu, Sarit K. Das, Roberto Di Paola, Yulong Ding, Frank Dubois, Grzegorz Dzido, Jacob Eapen, Denis Funfschilling, Quentin Galand, Jinwei Gao, Patricia E. Gharagozloo, Kenneth E. Goodson, Jorge Gustavo Gutierrez, Haiping Hong, Mark Horton, Kyo Sik Hwang, Carlo S. Iorio, Seok Pil Jang, Andrzej B. Jarzebski, Yiran Jiang, Stephan Kabelac, Liwen Jin, Aravind Kamath, Chongyoup Kim, Ji-Hyun Kim, Seokwon Kim, Seung Hyun Lee, Kai Choong Leong, Indranil Manna, Rui Ni, Hrishikesh E. Patel, Cecil Reynaud, Raffaele Savino, Pawan K. Singh, Pengxiang Song, Thirumalachari Sundararajan, Alekzandr N. Turanov, Stefan Van Vaerenbergh, Dongsheng Wen, Sanjeeva Witharana, Chun Yang, Wei-Hsun Yeh, Xiao-Zheng Zhao, Sheng-Qi Zhou

Rebecca J. Christianson

This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or “nanofluids,” was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about …


Effect Of Particle Properties And Light Polarization On The Plasmonic Resonances In Metallic Nanoparticles, U. Guler, R. Turan Jul 2010

Effect Of Particle Properties And Light Polarization On The Plasmonic Resonances In Metallic Nanoparticles, U. Guler, R. Turan

U. Guler

The resonance behavior of localized surface plasmons in silver and gold nanoparticles was studied in the visible and near-infrared regions of the electromagnetic spectrum. Arrays of nano-sized gold (Au) and silver (Ag) particles with different properties were produced with electron-beam lithography technique over glass substrates. The effect of the particle size, shape variations, period, thickness, metal type, substrate type and sulfidation were studied via transmission and reflectance measurements. The results are compared with the theoretical calculations based on the DDA simulations performed by software developed in this study. We propose a new intensity modulation technique based on localized surface plasmons …