Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Simulation And Analysis Of Ultrafast Laser Pulse Induced Plasma Generation In Dielectric Materials, Jeremy Gulley, Sebastian Winkler, William Dennis Mar 2007

Simulation And Analysis Of Ultrafast Laser Pulse Induced Plasma Generation In Dielectric Materials, Jeremy Gulley, Sebastian Winkler, William Dennis

Jeremy R. Gulley

Recent experiments on optical damage by ultrashort laser pulses have demonstrated that the temporal pulseshape can dramatically influence plasma generation in fused silica and sapphire. In this work a modified 3+1D nonlinear Schroedinger equation for the pulse propagation coupled to a rate equation for the plasma density in the dielectric material is used to simulate pulse propagation and plasma formation in a range of dielectric materials. We use these simulations to analyze the influence of pulse-width, pulse-shape and beam geometry on the formation of the electron plasma and hence damage in the bulk material. In particular, when possible, we simulate …


Self-Heating In Compost Piles Due To Biological Effects, Tim Marchant Dec 2006

Self-Heating In Compost Piles Due To Biological Effects, Tim Marchant

Tim Marchant

The increase in temperature in compost piles/landfill sites due to micro-organisms undergoing exothermic reactions is modelled. A simplified model is considered in which only biological self-heating is present. The heat release rate due to biological activity is modelled by a function which is a monotonic increasing function of temperature over the range 0⩽T⩽a, whilst for T⩾a it is a monotone decreasing function of temperature. This functional dependence represents the fact that micro-organisms die or become dormant at high temperatures. The bifurcation behaviour is investigated for 1-d slab and 2-d rectangular slab geometries. In both cases there are two generic steady-state …


Solitary Wave Interaction For A Higher-Order Nonlinear Schrodinger Equation, Tim Marchant Dec 2006

Solitary Wave Interaction For A Higher-Order Nonlinear Schrodinger Equation, Tim Marchant

Tim Marchant

Solitary wave interaction for a higher-order version of the nonlinear Schrödinger (NLS) equation is examined. An asymptotic transformation is used to transform a higher-order NLS equation to a higher-order member of the NLS integrable hierarchy, if an algebraic relationship between the higher-order coefficients is satisfied. The transformation is used to derive the higher-order one- and two-soliton solutions; in general, the N-soliton solution can be derived. It is shown that the higher-order collision is asymptotically elastic and analytical expressions are found for the higher-order phase and coordinate shifts. Numerical simulations of the interaction of two higher-order solitary waves are also performed. …


Asymptotic Solitons On A Non-Zero Mean Level., Tim Marchant Dec 2006

Asymptotic Solitons On A Non-Zero Mean Level., Tim Marchant

Tim Marchant

The collision of solitary waves for a higher-order modified Korteweg-de Vries (mKdV) equation is examined. In particular, the collision between solitary waves with sech-type and algebraic (which only exist on a non-zero mean level) profiles is considered. An asymptotic transformation, valid if the higher-order coefficients satisfy a certain algebraic relationship, is used to transform the higher-order mKdV equation to an integrable member of the mKdV hierarchy. The transformation is used to show that the higher-order collision is asymptotically elastic and to derive the higher-order phase shifts. Numerical simulations of both elastic and inelastic collisions are performed. For the example covered …


Numerical Simulation Of Contaminant Flow In A Wool Scour Bowl., Tim Marchant Dec 2006

Numerical Simulation Of Contaminant Flow In A Wool Scour Bowl., Tim Marchant

Tim Marchant

Wool scouring is the process of washing dirty wool after shearing. Our model numerically simulates contaminant movement in a wool scour bowl using the advection–dispersion equation. This is the first wool scour model to give time-dependent results and to model the transport of contaminants within a single scour bowl. Our aim is to gain a better understanding of the operating parameters that will produce efficient scouring. Investigating the effects of varying the parameters reveals simple, interesting relationships that give insight into the dynamics of a scour bowl.