Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physics

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Srinivas Sridhar

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Super-Resolution Imaging Using A Three-Dimensional Metamaterials Nanolens, B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, S. Sridhar Oct 2012

Super-Resolution Imaging Using A Three-Dimensional Metamaterials Nanolens, B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, S. Sridhar

Srinivas Sridhar

Super-resolution imaging beyond Abbe's diffraction limit can be achieved by utilizing an optical medium or "metamaterial" that can either amplify or transport the decaying near-field evanescent waves that carry subwavelength features of objects. Earlier approaches at optical frequencies mostly utilized the amplification of evanescent waves in thin metallic films or metal-dielectric multilayers, but were restricted to very small thicknesses (⪡λ, wavelength) and accordingly short object-image distances, due to losses in the material. Here, we present an experimental demonstration of super-resolution imaging by a low-loss three-dimensional metamaterial nanolens consisting of aligned gold nanowires embedded in a porous alumina matrix. This composite …


Possible Room-Temperature Ferromagnetism In Hydrogenated Carbon Nanotubes, Adam L. Friedman, Hyunkyung Chun, Yung Joon Jung, Don Heiman, Evan R. Glaser, Latika Menon Oct 2012

Possible Room-Temperature Ferromagnetism In Hydrogenated Carbon Nanotubes, Adam L. Friedman, Hyunkyung Chun, Yung Joon Jung, Don Heiman, Evan R. Glaser, Latika Menon

Yung Joon Jung

We find that ferromagnetism can be induced in carbon nanotubes (CNTs) by introducing hydrogen. Multiwalled CNTs grown inside porous alumina templates contain a large density of defects resulting in significant hydrogen uptake when annealed at high temperatures. This hydrogen incorporation produces H-complex and adatom magnetism which generates a sizable ferromagnetic moment and a Curie temperature near TC=1000  K. We studied the conditions for the incorporation of hydrogen, the temperature-dependent magnetic behavior, and the dependence of the ferromagnetism on the size of the nanotubes.


Possible Room-Temperature Ferromagnetism In Hydrogenated Carbon Nanotubes, Adam L. Friedman, Hyunkyung Chun, Yung Joon Jung, Don Heiman, Evan R. Glaser, Latika Menon Oct 2012

Possible Room-Temperature Ferromagnetism In Hydrogenated Carbon Nanotubes, Adam L. Friedman, Hyunkyung Chun, Yung Joon Jung, Don Heiman, Evan R. Glaser, Latika Menon

Donald Heiman

We find that ferromagnetism can be induced in carbon nanotubes (CNTs) by introducing hydrogen. Multiwalled CNTs grown inside porous alumina templates contain a large density of defects resulting in significant hydrogen uptake when annealed at high temperatures. This hydrogen incorporation produces H-complex and adatom magnetism which generates a sizable ferromagnetic moment and a Curie temperature near TC=1000  K. We studied the conditions for the incorporation of hydrogen, the temperature-dependent magnetic behavior, and the dependence of the ferromagnetism on the size of the nanotubes.


Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Donald Heiman

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Possible Room-Temperature Ferromagnetism In Hydrogenated Carbon Nanotubes, Adam Friedman, Hyunkyung Chun, Yung Joon Jung, Don Heiman, Evan Glaser, Latika Menon Oct 2012

Possible Room-Temperature Ferromagnetism In Hydrogenated Carbon Nanotubes, Adam Friedman, Hyunkyung Chun, Yung Joon Jung, Don Heiman, Evan Glaser, Latika Menon

Latika Menon

We find that ferromagnetism can be induced in carbon nanotubes (CNTs) by introducing hydrogen. Multiwalled CNTs grown inside porous alumina templates contain a large density of defects resulting in significant hydrogen uptake when annealed at high temperatures. This hydrogen incorporation produces H-complex and adatom magnetism which generates a sizable ferromagnetic moment and a Curie temperature near TC=1000  K. We studied the conditions for the incorporation of hydrogen, the temperature-dependent magnetic behavior, and the dependence of the ferromagnetism on the size of the nanotubes.


Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Latika Menon

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Super-Resolution Imaging Using A Three-Dimensional Metamaterials Nanolens, B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, S. Sridhar Oct 2012

Super-Resolution Imaging Using A Three-Dimensional Metamaterials Nanolens, B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, S. Sridhar

Latika Menon

Super-resolution imaging beyond Abbe's diffraction limit can be achieved by utilizing an optical medium or "metamaterial" that can either amplify or transport the decaying near-field evanescent waves that carry subwavelength features of objects. Earlier approaches at optical frequencies mostly utilized the amplification of evanescent waves in thin metallic films or metal-dielectric multilayers, but were restricted to very small thicknesses (⪡λ, wavelength) and accordingly short object-image distances, due to losses in the material. Here, we present an experimental demonstration of super-resolution imaging by a low-loss three-dimensional metamaterial nanolens consisting of aligned gold nanowires embedded in a porous alumina matrix. This composite …


Size-Dependent Metal-Insulator Transition In Pt-Dispersed Sio2 Thin Film: A Candidate For Future Non-Volatile Memory, Albert B. Chen Jun 2012

Size-Dependent Metal-Insulator Transition In Pt-Dispersed Sio2 Thin Film: A Candidate For Future Non-Volatile Memory, Albert B. Chen

Albert B Chen

Non-volatile random access memories (NVRAM) are promising data storage and processing devices. Various NVRAM, such as FeRAM and MRAM, have been studied in the past. But resistance switching random access memory (RRAM) has demonstrated the most potential for replacing flash memory in use today. In this dissertation, a novel RRAM material design that relies upon an electronic transition, rather than a phase change (as in chalcogenide Ovonic RRAM) or a structural change (such in oxide and halide filamentary RRAM), is investigated. Since the design is not limited to a single material but applicable to general combinations of metals and insulators, …


Performance Analysis Of Nitride Alternative Plasmonic Materials For Localized Surface Plasmon Applications, U. Guler, Gururaj V. Naik, Alexandra Boltasseva, Vladimir M. Shalaev, Alexander V. Kildishev Apr 2012

Performance Analysis Of Nitride Alternative Plasmonic Materials For Localized Surface Plasmon Applications, U. Guler, Gururaj V. Naik, Alexandra Boltasseva, Vladimir M. Shalaev, Alexander V. Kildishev

U. Guler

We consider methods to define the performance metrics for different plasmonic materials to be used in localized surface plasmon applications. Optical efficiencies are shown to be better indicators of performance as compared to approximations in the quasistatic regime. The near-field intensity efficiency, which is a generalized form of the well-known scattering efficiency, is a more flexible and useful metric for local-field enhancement applications. We also examine the evolution of the field enhancement from a particle surface to the far-field regime for spherical nanoparticles with varying radii. Titanium nitride and zirconium nitride, which were recently suggested as alternative plasmonic materials in …


Binary Nanoparticle Dispersed Metamaterial Implementation And Characterization, Han Li Jan 2012

Binary Nanoparticle Dispersed Metamaterial Implementation And Characterization, Han Li

Han Li

No abstract provided.