Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Bulk Fermi Surface And Momentum Density In Heavily Doped La₂₋ₓSrₓCuo₄ Using High-Resolution Compton Scattering And Positron Annihilation Spectroscopies, W. Al-Sawai, B. Barbiellini, Y. Sakurai, M. Itou, P. Mijnarends, R. Markiewicz, S. Kaprzyk, S. Wakimoto, M. Fujita, S. Basak, H. Lin, Yung Jui Wang, S. Eijt, H. Schut, K. Yamada, A. Bansil Apr 2012

Bulk Fermi Surface And Momentum Density In Heavily Doped La₂₋ₓSrₓCuo₄ Using High-Resolution Compton Scattering And Positron Annihilation Spectroscopies, W. Al-Sawai, B. Barbiellini, Y. Sakurai, M. Itou, P. Mijnarends, R. Markiewicz, S. Kaprzyk, S. Wakimoto, M. Fujita, S. Basak, H. Lin, Yung Jui Wang, S. Eijt, H. Schut, K. Yamada, A. Bansil

Robert Markiewicz

We have observed the bulk Fermi surface (FS) in an overdoped (x=0.3) single crystal of La₂₋ₓSrₓCuO₄ by using Compton scattering. A two-dimensional (2D) momentum density reconstruction from measured Compton profiles yields a clear FS signature in the third Brillouin zone along [100]. The quantitative agreement between density functional theory (DFT) calculations and momentum density experiment suggests that Fermi-liquid physics is restored in the overdoped regime. In particular the predicted FS topology is found to be in good accord with the corresponding experimental data. We find similar quantitative agreement between the measured 2D angular correlation of positron annihilation ...


Fermi-Surface Topology And Low-Lying Electronic Structure Of The Iron-Based Superconductor Ca₁₀(Pt₃As₈)(Fe₂As₂)₅, Madhab Neupane, Chang Liu, Su-Yang Xu, Yung-Jui Wang, Ni Ni, J. M. Allred, N. Alidoust, Hsin Lin, R. S. Markiewicz, A. Bansil, R. J. Cava, M. Z. Hasan Apr 2012

Fermi-Surface Topology And Low-Lying Electronic Structure Of The Iron-Based Superconductor Ca₁₀(Pt₃As₈)(Fe₂As₂)₅, Madhab Neupane, Chang Liu, Su-Yang Xu, Yung-Jui Wang, Ni Ni, J. M. Allred, N. Alidoust, Hsin Lin, R. S. Markiewicz, A. Bansil, R. J. Cava, M. Z. Hasan

Robert Markiewicz

We report a study of low-energy electronic structure and Fermi surface topology for the recently discovered iron-based superconductor Ca₁₀(Pt₃As₈)(Fe₂As₂)₅(the 10-3-8 phase, with Tc∼8 K), via angle-resolved photoemission spectroscopy (ARPES). Despite its triclinic crystal structure, ARPES results reveal a fourfold symmetric band structure with the absence of Dirac-cone-like Fermi dots (related to magnetism) found around the Brillouin zone corners in other iron-based superconductors. Considering that the triclinic lattice and structural supercell arise from the Pt₃As₈ intermediary layers, these results indicate that those layers couple only weakly to the FeAs layers in this new superconductor at least ...