Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Physics

Vanadium Oxide Thin-Film Variable Resistor-Based Rf Switches, Kuanchang Pan, Weisong Wang, Eunsung Shin, Kelvin Freeman, Guru Subramanyam Dec 2015

Vanadium Oxide Thin-Film Variable Resistor-Based Rf Switches, Kuanchang Pan, Weisong Wang, Eunsung Shin, Kelvin Freeman, Guru Subramanyam

Guru Subramanyam

Vanadium dioxide (VO2) is a unique phase change material (PCM) that possesses a metal-to-insulator transition property. Pristine VO2 has a negative temperature coefficient of resistance, and it undergoes an insulator-to-metal phase change at a transition temperature of 68°C. Such a property makes the VO2 thin-film-based variable resistor (varistor) a good candidate in reconfigurable electronics to be integrated with different RF devices such as inductors, varactors, and antennas. Series single-pole single-throw (SPST) switches with integrated VO2 thin films were designed, fabricated, and tested. The overall size of the device is 380 μm × 600 μm. The SPST switches were fabricated on …


A High Performance Ceramic-Polymer Separator For Lithium Batteries, Jitendra Kumar, Padmakar Kichambare, Amarendra K. Rai, Rabi Bhattacharya, Stanley J. Rodrigues, Guru Subramanyam Dec 2015

A High Performance Ceramic-Polymer Separator For Lithium Batteries, Jitendra Kumar, Padmakar Kichambare, Amarendra K. Rai, Rabi Bhattacharya, Stanley J. Rodrigues, Guru Subramanyam

Guru Subramanyam

A three-layered (ceramic-polymer-ceramic) hybrid separator was prepared by coating ceramic electrolyte [lithium aluminum germanium phosphate (LAGP)] over both sides of polyethylene (PE) polymer membrane using electron beam physical vapor deposition (EB-PVD) technique. Ionic conductivities of membranes were evaluated after soaking PE and LAGP/PE/LAGP membranes in a 1 Molar (1M) lithium hexafluroarsenate (LiAsF6) electrolyte in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethylmethyl carbonate (EMC) in volume ratio (1:1:1). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were employed to evaluate morphology and structure of the separators before and after cycling performance tests to better understand structure-property correlation. As compared …


Industry-University Collaboration: A University Of Dayton Model, Guru Subramanyam Dec 2015

Industry-University Collaboration: A University Of Dayton Model, Guru Subramanyam

Guru Subramanyam

This paper introduces industry-university collaboration activities currently in place at the University of Dayton's School of Engineering. These collaborations are important to prepare industry-ready graduates who excel in technical, entrepreneurial, and leadership skills. One of the key curricular components is the industry-sponsored multidisciplinary projects. Industry involvement in advisory committee, strategic research partnerships, and other forms are discussed.


Adaptive Beam Director For A Tiled Fiber Array, Mikhail Vorontsov, Jim F. Riker, Ernst Polnau, Svetlana Lachinova, Venkata S. Rao Gudimetla Nov 2015

Adaptive Beam Director For A Tiled Fiber Array, Mikhail Vorontsov, Jim F. Riker, Ernst Polnau, Svetlana Lachinova, Venkata S. Rao Gudimetla

Mikhail Vorontsov

We present the concept development of a novel atmospheric compensation system based on adaptive tiled fiber array architecture operating with target-in-the-loop scenarios for directed beam applications. The adaptive tiled fiber array system is integrated with adaptive beam director (ABD). Wavefront control and sensing functions are performed directly on the beam director telescope primary mirror. The beam control of the adaptive tiled fiber array aims to compensate atmospheric turbulence-induced dynamic phase aberrations and results in a corresponding brightness increase on the illuminated extended object. The system is specifically designed for tiled fiber system architectures operating in strong intensity scintillation and speckle-modulation …


Characterization Of Atmospheric Turbulence Effects Over 149 Km Propagation Path Using Multi-Wavelength Laser Beacons, Mikhail Vorontsov, Gary W. Carhart, Venkata S. Rao Gudimetla, Thomas Weyrauch, Eric Stevenson, Svetlana Lachinova, Leonid A. Beresnev, Jony Jiang Liu, Karl Rehder, Jim F. Riker Nov 2015

Characterization Of Atmospheric Turbulence Effects Over 149 Km Propagation Path Using Multi-Wavelength Laser Beacons, Mikhail Vorontsov, Gary W. Carhart, Venkata S. Rao Gudimetla, Thomas Weyrauch, Eric Stevenson, Svetlana Lachinova, Leonid A. Beresnev, Jony Jiang Liu, Karl Rehder, Jim F. Riker

Mikhail Vorontsov

We describe preliminary results of a set of laser beam propagation experiments performed over a long (149 km) near-horizontal propagation path between Mauna Loa (Hawaii Island) and Haleakala (Island of Maui) mountains in February 2010. The distinctive feature of the experimental campaign referred to here as the Coherent Multi-Beam Atmospheric Transceiver (COMBAT) experiments is that the measurements of the atmospheric-turbulence induced laser beam intensity scintillations at the receiver telescope aperture were obtained simultaneously using three laser sources (laser beacons) with different wavelengths (λ1 = 0.53 μm, λ2 = 1.06 μm, and λ3 = 1.55 μm). The presented experimental results on …


Comparison Of Turbulence-Induced Scintillations For Multi-Wavelength Laser Beacons Over Tactical (7 Km) And Long (149 Km) Atmospheric Propagation Paths, Mikhail Vorontsov, Venkata S. Rao Gudimetla, Gary W. Carhart, Thomas Weyrauch, Svetlana Lachinova, Ernst Polnau, Joseph Rierson, Leonid A. Beresnev, Jony Jiang Liu, Jim F. Riker Nov 2015

Comparison Of Turbulence-Induced Scintillations For Multi-Wavelength Laser Beacons Over Tactical (7 Km) And Long (149 Km) Atmospheric Propagation Paths, Mikhail Vorontsov, Venkata S. Rao Gudimetla, Gary W. Carhart, Thomas Weyrauch, Svetlana Lachinova, Ernst Polnau, Joseph Rierson, Leonid A. Beresnev, Jony Jiang Liu, Jim F. Riker

Mikhail Vorontsov

We report results of the experimental analysis of atmospheric effects on laser beam propagation over two distinctive propagation paths: a long-range (149 km) propagation path between Mauna Loa (Island of Hawaii) and Haleakala (Island of Maui) mountains, and a tactical-range (7 km) propagation path between the roof of the Dayton Veterans Administration Medical Center (VAMC) and the Intelligent Optics Laboratory (IOL/UD) located on the 5th floor of the University of Dayton College Park Center building. Both testbeds include three laser beacons operating at wavelengths 532 nm, 1064 nm, and 1550 nm and a set of identical optical receiver systems with …


Atmospheric Turbulence Compensation Of Point Source Images Using Asynchronous Stochastic Parallel Gradient Descent Technique On Amos 3.6 M Telescope, Mikhail Vorontsov, Jim F. Riker, Gary W. Carhart, Venkata S. Rao Gudimetla, Leonid A. Beresnev, Thomas Weyrauch Nov 2015

Atmospheric Turbulence Compensation Of Point Source Images Using Asynchronous Stochastic Parallel Gradient Descent Technique On Amos 3.6 M Telescope, Mikhail Vorontsov, Jim F. Riker, Gary W. Carhart, Venkata S. Rao Gudimetla, Leonid A. Beresnev, Thomas Weyrauch

Mikhail Vorontsov

The Stochastic Parallel Gradient Descent Technique-based Adaptive Optics (SPGD-AO) system described in this presentation does not use a conventional wavefront sensor. It uses a metric signal collected by a single pixel detector placed behind a pinhole in the image plane to drive three deformable mirrors (DMs). The system is designed to compensate the image for turbulence effects. The theory behind this method is described in detail in [1]. However this technique, while widely simulated and tested in the laboratory, was not yet verified in astronomical field site experiments. During the month of May 2007, a series of experiments with SPGD-AO …


Pocket Deformable Mirror For Adaptive Optics Applications, Leonid A. Beresnev, Mikhail Vorontsov, Peter Wangsness Nov 2015

Pocket Deformable Mirror For Adaptive Optics Applications, Leonid A. Beresnev, Mikhail Vorontsov, Peter Wangsness

Mikhail Vorontsov

Adaptive/active optical elements are designed to improve optical system performance in the presence of phase aberrations. For atmospheric optics and astronomical applications, an ideal deformable mirror should have sufficient frequency bandwidth for compensation of fast changing wave front aberrations induced by either atmospheric turbulences or by turbulent air flows surrounding a flying object (air optical effects). In many applications, such as atmospheric target tracking, remote sensing from flying aircraft, boundary layer imaging, laser communication and laser beam projection over near horizontal propagation paths the phase aberration frequency bandwidth can exceed several kHz. These fast-changing aberrations are currently compensated using relatively …


Adaptive Optics Performance Over Long Horizontal Paths: Aperture Effects In Multi-Conjugate Adaptive Optical Systems, Miao Yu, Mikhail Vorontsov, Svetlana Lachinova, Jim F. Riker, Venkata S. Rao Gudimetla Nov 2015

Adaptive Optics Performance Over Long Horizontal Paths: Aperture Effects In Multi-Conjugate Adaptive Optical Systems, Miao Yu, Mikhail Vorontsov, Svetlana Lachinova, Jim F. Riker, Venkata S. Rao Gudimetla

Mikhail Vorontsov

We analyze various scenarios of the aperture effects in adaptive optical receiver-type systems when inhomogeneities of the wave propagation medium are distributed over long horizontal propagation path, or localized in a few thin layers remotely located from the receiver telescope pupil. Phase aberration compensation is performed using closed-loop control architectures based on phase conjugation and decoupled stochastic parallel gradient descent (DSPGD) control algorithms. Both receiver system aperture diffraction effects and the impact of wave-front corrector position on phase aberration compensation efficiency are analyzed for adaptive systems with single or multiple wave-front correctors.


Scene-Based Nonuniformity Correction With Reduced Ghosting Using A Gated Lms Algorithm, Russell C. Hardie, Frank Orion Baxley, Brandon J. Brys, Patrick C. Hytla May 2015

Scene-Based Nonuniformity Correction With Reduced Ghosting Using A Gated Lms Algorithm, Russell C. Hardie, Frank Orion Baxley, Brandon J. Brys, Patrick C. Hytla

Russell C. Hardie

In this paper, we present a scene-based nouniformity correction (NUC) method using a modified adaptive least mean square (LMS) algorithm with a novel gating operation on the updates. The gating is designed to significantly reduce ghosting artifacts produced by many scene-based NUC algorithms by halting updates when temporal variation is lacking. We define the algorithm and present a number of experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published methods including other LMS and constant statistics based methods. The experimental results include simulated imagery and a real infrared image sequence. We show that …


Fast Super-Resolution With Affine Motion Using An Adaptive Wiener Filter And Its Application To Airborne Imaging, Russell C. Hardie, Kenneth J. Barnard, Raúl Ordóñez May 2015

Fast Super-Resolution With Affine Motion Using An Adaptive Wiener Filter And Its Application To Airborne Imaging, Russell C. Hardie, Kenneth J. Barnard, Raúl Ordóñez

Russell C. Hardie

Fast nonuniform interpolation based super-resolution (SR) has traditionally been limited to applications with translational interframe motion. This is in part because such methods are based on an underlying assumption that the warping and blurring components in the observation model commute. For translational motion this is the case, but it is not true in general. This presents a problem for applications such as airborne imaging where translation may be insufficient. Here we present a new Fourier domain analysis to show that, for many image systems, an affine warping model with limited zoom and shear approximately commutes with the point spread function …


Super-Resolution For Imagery From Integrated Microgrid Polarimeters, Russell C. Hardie, Daniel A. Lemaster, Bradley Michael Ratliff May 2015

Super-Resolution For Imagery From Integrated Microgrid Polarimeters, Russell C. Hardie, Daniel A. Lemaster, Bradley Michael Ratliff

Russell C. Hardie

Imagery from microgrid polarimeters is obtained by using a mosaic of pixel-wise micropolarizers on a focal plane array (FPA). Each distinct polarization image is obtained by subsampling the full FPA image. Thus, the effective pixel pitch for each polarization channel is increased and the sampling frequency is decreased. As a result, aliasing artifacts from such undersampling can corrupt the true polarization content of the scene. Here we present the first multi-channel multi-frame super-resolution (SR) algorithms designed specifically for the problem of image restoration in microgrid polarization imagers. These SR algorithms can be used to address aliasing and other degradations, without …


Adaptive Wiener Filter Super-Resolution Of Color Filter Array Images, Barry K. Karch, Russell C. Hardie May 2015

Adaptive Wiener Filter Super-Resolution Of Color Filter Array Images, Barry K. Karch, Russell C. Hardie

Russell C. Hardie

Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method …


Fast Super-Resolution Using An Adaptive Wiener Filter With Robustness To Local Motion, Russell C. Hardie, Kenneth J. Barnard May 2015

Fast Super-Resolution Using An Adaptive Wiener Filter With Robustness To Local Motion, Russell C. Hardie, Kenneth J. Barnard

Russell C. Hardie

We present a new adaptive Wiener filter (AWF) super-resolution (SR) algorithm that employs a global background motion model but is also robust to limited local motion. The AWF relies on registration to populate a common high resolution (HR) grid with samples from several frames. A weighted sum of local samples is then used to perform nonuniform interpolation and image restoration simultaneously. To achieve accurate subpixel registration, we employ a global background motion model with relatively few parameters that can be estimated accurately. However, local motion may be present that includes moving objects, motion parallax, or other deviations from the background …


Joint Wavelet Transform Correlation With Separated Target And Reference Planes, Boon Yi Soon, Mohammad A. Karim, Russell C. Hardie, Mohammad S. Alam May 2015

Joint Wavelet Transform Correlation With Separated Target And Reference Planes, Boon Yi Soon, Mohammad A. Karim, Russell C. Hardie, Mohammad S. Alam

Russell C. Hardie

In recent years, we realize the usefulness of feature extraction for optical correlator and hereby, we investigate the capability of Laplace operator in feature extraction of multiple targets. The first-order terms and the false alarm terms in the correlation output would be removed using electronic power spectrum subtraction technique. Most importantly, the entire magneto-optic SLM is completely utilized for displaying only targets in the input scene. A new cost efficient hardware implementation is proposed and aforementioned result of the proposed system is evaluated through computer simulation.


Fast Super-Resolution With Affine Motion Using An Adaptive Wiener Filter And Its Application To Airborne Imaging, Russell C. Hardie, Kenneth J. Barnard, Raúl Ordóñez May 2015

Fast Super-Resolution With Affine Motion Using An Adaptive Wiener Filter And Its Application To Airborne Imaging, Russell C. Hardie, Kenneth J. Barnard, Raúl Ordóñez

Raúl Ordóñez

Fast nonuniform interpolation based super-resolution (SR) has traditionally been limited to applications with translational interframe motion. This is in part because such methods are based on an underlying assumption that the warping and blurring components in the observation model commute. For translational motion this is the case, but it is not true in general. This presents a problem for applications such as airborne imaging where translation may be insufficient. Here we present a new Fourier domain analysis to show that, for many image systems, an affine warping model with limited zoom and shear approximately commutes with the point spread function …


Robust Super-Resolution By Fusion Of Interpolated Frames For Color And Grayscale Images, Barry K. Karch, Russell C. Hardie May 2015

Robust Super-Resolution By Fusion Of Interpolated Frames For Color And Grayscale Images, Barry K. Karch, Russell C. Hardie

Russell C. Hardie

Multi-frame super-resolution (SR) processing seeks to overcome undersampling issues that can lead to undesirable aliasing artifacts in imaging systems. A key factor in effective multi-frame SR is accurate subpixel inter-frame registration. Accurate registration is more difficult when frame-to-frame motion does not contain simple global translation and includes locally moving scene objects. SR processing is further complicated when the camera captures full color by using a Bayer color filter array (CFA). Various aspects of these SR challenges have been previously investigated. Fast SR algorithms tend to have difficulty accommodating complex motion and CFA sensors. Furthermore, methods that can tolerate these complexities …


Impact Of Detector-Element Active-Area Shape And Fill Factor On Image Sampling, Restoration, And Super-Resolution, Russell C. Hardie, Douglas R. Droege, Alexander J. Dapore, Mark E. Greiner May 2015

Impact Of Detector-Element Active-Area Shape And Fill Factor On Image Sampling, Restoration, And Super-Resolution, Russell C. Hardie, Douglas R. Droege, Alexander J. Dapore, Mark E. Greiner

Russell C. Hardie

In many undersampled imaging systems, spatial integration from the individual detector elements is the dominant component of the system point spread function (PSF). Conventional focal plane arrays (FPAs) utilize square detector elements with a nearly 100% fill factor, where fill factor is defined as the fraction of the detector element area that is active in light detection. A large fill factor is generally considered to be desirable because more photons are collected for a given pitch, and this leads to a higher signal-to-noise-ratio (SNR). However, the large active area works against super-resolution (SR) image restoration by acting as an additional …


Rank Conditioned Rank Selection Filters For Signal Restoration, Russell C. Hardie, Kenneth E. Barner May 2015

Rank Conditioned Rank Selection Filters For Signal Restoration, Russell C. Hardie, Kenneth E. Barner

Russell C. Hardie

A class of nonlinear filters called rank conditioned rank selection (RCRS) filters is developed and analyzed in this paper. The RCRS filters are developed within the general framework of rank selection(RS) filters, which are filters constrained to output an order statistic from the observation set. Many previously proposed rank order based filters can be formulated as RS filters. The only difference between such filters is in the information used in deciding which order statistic to output. The information used by RCRS filters is the ranks of selected input samples, hence the name rank conditioned rank selection filters. The number of …


Partition-Based Interpolation For Color Filter Array Demosaicking And Super-Resolution Reconstruction, Min Shao, Kenneth E. Barner, Russell C. Hardie Mar 2015

Partition-Based Interpolation For Color Filter Array Demosaicking And Super-Resolution Reconstruction, Min Shao, Kenneth E. Barner, Russell C. Hardie

Russell C. Hardie

A class of partition-based interpolators that addresses a variety of image interpolation applications are proposed. The proposed interpolators first partition an image into a finite set of partitions that capture local image structures. Missing high resolution pixels are then obtained through linear operations on neighboring pixels that exploit the captured image structure. By exploiting the local image structure, the proposed algorithm produces excellent performance on both edge and uniform regions. The presented results demonstrate that partition-based interpolation yields results superior to traditional and advanced algorithms in the applications of color filter array (CFA) demosaicking and super-resolution reconstruction.


Aliasing Reduction In Staring Infrared Imagers Utilizing Subpixel Techniques, Joseph C. Gillette, Thomas M. Stadtmiller, Russell C. Hardie Mar 2015

Aliasing Reduction In Staring Infrared Imagers Utilizing Subpixel Techniques, Joseph C. Gillette, Thomas M. Stadtmiller, Russell C. Hardie

Russell C. Hardie

We introduce and analyze techniques for the reduction of aliased signal energy in a staring infrared imaging system. A standard staring system uses a fixed two-dimensional detector array that corresponds to a fixed spatial sampling frequency determined by the detector pitch or spacing. Aliasing will occur when sampling a scene containing spatial frequencies exceeding half the sampling frequency. This aliasing can significantly degrade the image quality. The aliasing reduction schemes presented here, referred to as microscanning, exploit subpixel shifts between time frames of an image sequence. These multiple images are used to reconstruct a single frame with reduced aliasing. If …