Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Superconductivity At Т≈200 K In Bismuth Cuprates Synthesized Using Solar Energy, J. Chigvinadze, Juana Acrivos, S. Ashimov, D. Gulamova, G. Donadze Oct 2017

Superconductivity At Т≈200 K In Bismuth Cuprates Synthesized Using Solar Energy, J. Chigvinadze, Juana Acrivos, S. Ashimov, D. Gulamova, G. Donadze

Faculty Publications, Chemistry

When investigating low-frequency (0.1 Hz) oscillations of multiphase high-temperature cuprate superconductors (HTCS) Bi1,7Pb0,3Sr2Ca(n-1)CunOy (n=2-30), a wide attenuation peak (ΔT~100 К) with a maximum at Т≈200 К was detected. This peak was particularly pronounced in field cooling (FC) experiments, i.e. after abrupt cooling of the sample in the external magnetic field at the temperature Т<Тс with subsequent slow warming up to room temperature with invariance of the applied field. The attenuation peak height depended on the preliminaryorientation (before cooling) of the samples θ in the measured permanent magnetic field Н. On the one hand, it is well known that, after the FC procedure and subsequent slow warming up, at the temperatures close to the critical temperature Тс, the attenuation peak associated with “melting” of the Abrikosov frozen vortex structure and its disappearance at Т >Тс is detected in monophase samples. At the same time, in most multiphase bismuth HTCS samples, synthesized using solar energy and superfast quenching of the melt, the attenuation peak with the maximum at Т≈200 К was observed.Depending on the conditions of synthesis, the attenuation peak could …


Spin-Imbalance In A 2d Fermi-Hubbard System, Peter Brown, Debayan Mitra, Elmer Guardado-Sanchez, Peter Schauß, Stanimir Kondov, Ehsan Khatami, Thereza Paiva, Nandini Trivedi, David Huse, Waseem Bakr Sep 2017

Spin-Imbalance In A 2d Fermi-Hubbard System, Peter Brown, Debayan Mitra, Elmer Guardado-Sanchez, Peter Schauß, Stanimir Kondov, Ehsan Khatami, Thereza Paiva, Nandini Trivedi, David Huse, Waseem Bakr

Faculty Publications

The interplay of strong interactions and magnetic fields gives rise to unusual forms of superconductivity and magnetism in quantum many-body systems. Here, we present an experimental study of the two-dimensional Fermi-Hubbard model—a paradigm for strongly correlated fermions on a lattice—in the presence of a Zeeman field and varying doping. Using site-resolved measurements, we revealed anisotropic antiferromagnetic correlations, a precursor to long-range canted order. We observed nonmonotonic behavior of the local polarization with doping for strong interactions, which we attribute to the evolution from an antiferromagnetic insulator to a metallic phase. Our results pave the way to experimentally mapping the low-temperature …


Machine Learning Phases Of Strongly Correlated Fermions, Kelvin Ch'ng, Juan Carrasquilla, Roger Melko, Ehsan Khatami Aug 2017

Machine Learning Phases Of Strongly Correlated Fermions, Kelvin Ch'ng, Juan Carrasquilla, Roger Melko, Ehsan Khatami

Faculty Publications

Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural network machine learning techniques to distinguish finite-temperature phases of the strongly-correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling). We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. …


Equity Of Success In Clasp Courses At Uc Davis, Cassandra Paul, David Webb, Mary Chessey, Wendell Potter Jul 2017

Equity Of Success In Clasp Courses At Uc Davis, Cassandra Paul, David Webb, Mary Chessey, Wendell Potter

Faculty Publications

We have recently described the reformed introductory physics course, Collaborative Learning through Active Sense-Making in Physics (CLASP), for bioscience students at UC Davis and argued that the course was more successful than its predecessor (Physics 5) by several measures. Now we examine the effects of these courses for different student ethnic groups. We find that, compared to Physics 5, students of most ethnic backgrounds were more successful in CLASP. We also find that students from ethnic groups underrepresented in STEM who took the CLASP course were more likely to graduate as STEM majors. We discuss possible features of CLASP that …


On The Origin Of Energy: Metaphors And Manifestations As Resources For Conceptualizing And Measuring The Invisible, Imponderable, Benedikt Harrer May 2017

On The Origin Of Energy: Metaphors And Manifestations As Resources For Conceptualizing And Measuring The Invisible, Imponderable, Benedikt Harrer

Faculty Publications

This article explores the origins of metaphorical language to describe energy by reviewing the historical development of the concept by physicists since the early 19th century. In addition to examples of historical and contemporary use of metaphors in academic writing, observable manifestations of energy are identified as the origin of energy “forms.” The historical- philosophical review and presentation of examples from contemporary physics literature contribute a disciplinary foundation to recent claims about the productiveness of physics learners’ use of metaphors and indicators to describe energy.


Kinetic Theory Of Dark Solitons With Tunable Friction, Hilary M. Hurst, Dimitry K. Efimkin, I. B. Spielman, Victor Galitski May 2017

Kinetic Theory Of Dark Solitons With Tunable Friction, Hilary M. Hurst, Dimitry K. Efimkin, I. B. Spielman, Victor Galitski

Faculty Research, Scholarly, and Creative Activity

We study controllable friction in a system consisting of a dark soliton in a one-dimensional Bose-Einstein condensate coupled to a non-interacting Fermi gas. The fermions act as impurity atoms, not part of the original condensate, that scatter off of the soliton. We study semi-classical dynamics of the dark soliton, a particle-like object with negative mass, and calculate its friction coefficient. Surprisingly, it depends periodically on the ratio of interspecies (impurity-condensate) to intraspecies (condensate-condensate) interaction strengths. By tuning this ratio, one can access a regime where the friction coefficient vanishes. We develop a general theory of stochastic dynamics for negative mass …


Brownian Motion Of Solitons In A Bose-Einstein Condensate, Lauren M. Aycock, Hilary M. Hurst, Dimitry K. Efimkin, Dina Genkina, Hsin-I Lu, Victor M. Galitski, I. B. Spielman Feb 2017

Brownian Motion Of Solitons In A Bose-Einstein Condensate, Lauren M. Aycock, Hilary M. Hurst, Dimitry K. Efimkin, Dina Genkina, Hsin-I Lu, Victor M. Galitski, I. B. Spielman

Faculty Research, Scholarly, and Creative Activity

We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated 87 Rb Bose-Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one-dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton's diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent …