Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Rowan University

Tissue Engineering

Articles 1 - 2 of 2

Full-Text Articles in Physics

Recent Progress In Biopolymer-Based Hydrogel Materials For Biomedical Applications., Ayaz Mahmood, Dev Patel, Brandon Hickson, John Desrochers, Xiao Hu Jan 2022

Recent Progress In Biopolymer-Based Hydrogel Materials For Biomedical Applications., Ayaz Mahmood, Dev Patel, Brandon Hickson, John Desrochers, Xiao Hu

Faculty Scholarship for the College of Science & Mathematics

Hydrogels from biopolymers are readily synthesized, can possess various characteristics for different applications, and have been widely used in biomedicine to help with patient treatments and outcomes. Polysaccharides, polypeptides, and nucleic acids can be produced into hydrogels, each for unique purposes depending on their qualities. Examples of polypeptide hydrogels include collagen, gelatin, and elastin, and polysaccharide hydrogels include alginate, cellulose, and glycosaminoglycan. Many different theories have been formulated to research hydrogels, which include Flory-Rehner theory, Rubber Elasticity Theory, and the calculation of porosity and pore size. All these theories take into consideration enthalpy, entropy, and other thermodynamic variables so that …


Protein And Polysaccharide-Based Magnetic Composite Materials For Medical Applications., Elizabeth J Bealer, Kyril Kavetsky, Sierra Dutko, Samuel Lofland, Xiao Hu Dec 2019

Protein And Polysaccharide-Based Magnetic Composite Materials For Medical Applications., Elizabeth J Bealer, Kyril Kavetsky, Sierra Dutko, Samuel Lofland, Xiao Hu

Faculty Scholarship for the College of Science & Mathematics

The combination of protein and polysaccharides with magnetic materials has been implemented in biomedical applications for decades. Proteins such as silk, collagen, and elastin and polysaccharides such as chitosan, cellulose, and alginate have been heavily used in composite biomaterials. The wide diversity in the structure of the materials including their primary monomer/amino acid sequences allow for tunable properties. Various types of these composites are highly regarded due to their biocompatible, thermal, and mechanical properties while retaining their biological characteristics. This review provides information on protein and polysaccharide materials combined with magnetic elements in the biomedical space showcasing the materials used, …