Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

Gravity-Assist Trajectories To Venus, Mars, And The Ice Giants: Mission Design With Human And Robotic Applications, Kyle M. Hughes Dec 2016

Gravity-Assist Trajectories To Venus, Mars, And The Ice Giants: Mission Design With Human And Robotic Applications, Kyle M. Hughes

Open Access Dissertations

Gravity-assist trajectories to Uranus and Neptune are found (with the allowance of impulsive maneuvers using chemical propulsion) for launch dates ranging from 2024 to 2038 for Uranus and 2020 to 2070 for Neptune. Solutions are found using a patched conic model with analytical ephemeris via the Satellite Tour Design Program (STOUR), originally developed at the Jet Propulsion Laboratory (JPL). Delivered payload mass is computed for all solutions for select launch vehicles, and attractive solutions are identified as those that deliver a specified amount of payload mass into orbit at the target body in minimum time. The best cases for each …


Particle Modeling Of Non-Equilibrium Field Emission Driven Rf Microplasmas, Siva Sashank Tholeti Aug 2016

Particle Modeling Of Non-Equilibrium Field Emission Driven Rf Microplasmas, Siva Sashank Tholeti

Open Access Dissertations

Non-equilibrium microplasmas at atmospheric pressures have been investigated for active flow control, micropropulsion and electronic display applications to name a few. The operational voltages for these microplasmas are on the order of kilovolts. When the electric field at the electrodes reaches GV/m or tens of GV/m either due to reduced interelectrode spacing and surface irregularities or due to carefully designed nanostructures on the electrodes, quantum processes such as field emission and field ionization come into effect. These can potentially reduce the operational voltages of microplasma devices by an order of magnitude. Due to the rarefied and non-equilibrium nature of these …


The Impact Of Crystal Morphology On The Thermal Responses Of Ultrasonically-Excited Energetic Materials, J. K. Miller, J. O. Mares, I. E. Gunduz, Steven F. Son, Jeff Rhoads Dec 2015

The Impact Of Crystal Morphology On The Thermal Responses Of Ultrasonically-Excited Energetic Materials, J. K. Miller, J. O. Mares, I. E. Gunduz, Steven F. Son, Jeff Rhoads

Purdue Energetics Research Center Articles

The ability to detect explosive materials may be significantly enhanced with local increases in vapor pressure caused by an elevation of the materials'temperature. Recently, ultrasonic excitation has been shown to generate heat within plastic-bonded energetic materials. To investigate the impact of crystal morphology on this heating, samples of elastic binder are implanted with single ammonium perchlorate crystals of two distinct shape groups. Contact piezoelectric transducers are then used to excite the samples at ultrasonicfrequencies. The thermal responses of the crystals are recorded using infrared thermography, and the rate of heating is estimated. Surface temperature increases up to 15 °C …


Kinetic Modeling Of Roll To Roll Rfcvd Plasma, Kudzo S. Ahegbebu, Siva Sashank Tholeti, Alina A. Alexeenko Aug 2015

Kinetic Modeling Of Roll To Roll Rfcvd Plasma, Kudzo S. Ahegbebu, Siva Sashank Tholeti, Alina A. Alexeenko

The Summer Undergraduate Research Fellowship (SURF) Symposium

Roll-to-roll radio frequency plasma enhanced chemical vapor deposition (R2R RFCVD) is a technique for large-scale synthesis of high quality graphitic nanopetals. Graphitic nanopetals are petal-like graphene structures with remarkable electrical and mechanical properties with major industrial applications such as microsupercapacitors. RFCVD uses a non-equilibrium plasma with high energy electrons to catalyze chemical reactions, induce the creation of free radicals, and promote otherwise high temperature chemistry in a low temperature environment. Understanding how bulk plasma characteristics (particularly, power and number densities) vary with changing reactor parameters is an important step towards optimizing synthesis techniques. In our present work we use the …


Dsmc Simulation Of Microstructure Actuation By Knudsen Thermal Force, Aaron Pikus, Israel Sebastiao, Andrew Strongrich, Alina Alexeenko Aug 2015

Dsmc Simulation Of Microstructure Actuation By Knudsen Thermal Force, Aaron Pikus, Israel Sebastiao, Andrew Strongrich, Alina Alexeenko

The Summer Undergraduate Research Fellowship (SURF) Symposium

In many industrial and research applications there is a need for vacuum sensors with higher accuracy and spatial resolution than what is currently available. Examples of target applications include high-altitude platforms, satellites and in-vacuum manufacturing processes such as freeze-drying of food and pharmaceuticals. In this connection, a novel pressure sensor, named Microelectromechanical In-plane Knudsen Radiometric Actuator (MIKRA), has been developed by at Purdue University. MIKRA is based on Knudsen thermal forces generated by rarefied flow driven by thermal gradients within the microstructure Thus, the goal of this work is to model the rarefied gas flow in the MIKRA sensor under …


A Contribution Toward Better Understanding Of Overbanking Tendency In Fixed-Wing Aircraft, Nihad E. Daidzic Feb 2015

A Contribution Toward Better Understanding Of Overbanking Tendency In Fixed-Wing Aircraft, Nihad E. Daidzic

Journal of Aviation Technology and Engineering

The phenomenon of overbanking tendency for a rigid-body, fixed-wing aircraft is investigated. Overbanking tendency is defined as a spontaneous, unbalanced rolling moment that keeps increasing an airplane’s bank angle in steep turns and must be arrested by opposite aileron action. As stated by the Federal Aviation Administration, the overbanking tendency may lead to a loss of control, especially in instrument meteorological conditions. It was found in this study that the speed differential over wing halves in horizontal turns indeed creates a rolling moment that achieves maximum values for bank angles between 45 and 55 degrees. However, this induced rolling moment …


Applications Of Femtosecond Coherent Anti-Stokes Raman Scattering In Combustion, Claresta Nicole Dennis Oct 2014

Applications Of Femtosecond Coherent Anti-Stokes Raman Scattering In Combustion, Claresta Nicole Dennis

Open Access Dissertations

The dissertation deals with the further development of chirped-probe-pulse femtosecond coherent anti-Stokes Raman spectroscopy (CPP fs-CARS) for applications of gas phase thermometry and extension to methane concentration measurements. The main effort has been to assess the usefulness and robustness of the technique in turbulent combustors of practical interest. A primary aim has been to evaluate the use of CPP fs-CARS for vibrational N2 thermometry in a highly turbulent environment. It has been suggested that due to the laser beam temporal overlap required for fs-CARS signal generation, the technique would be unsuccessful due to beam propagation retardation effects from density …


Feasibility Analysis Of Large Length-Scale Thermocapillary Flow Experiment For The International Space Station, Samantha Jean Alberts Apr 2014

Feasibility Analysis Of Large Length-Scale Thermocapillary Flow Experiment For The International Space Station, Samantha Jean Alberts

Open Access Theses

The investigation of microgravity fluid dynamics emerged out of necessity with the advent of space exploration. In particular, capillary research took a leap forward in the 1960s with regards to liquid settling and interfacial dynamics. Due to inherent temperature variations in large spacecraft liquid systems, such as fuel tanks, forces develop on gas-liquid interfaces which induce thermocapillary flows. To date, thermocapillary flows have been studied in small, idealized research geometries usually under terrestrial conditions. The 1 to 3m lengths in current and future large tanks and hardware are designed based on hardware rather than research, which leaves spaceflight systems designers …


Applicability Of Continuum Fracture Mechanics In Atomistic Systems, Shao-Huan Cheng Oct 2013

Applicability Of Continuum Fracture Mechanics In Atomistic Systems, Shao-Huan Cheng

Open Access Dissertations

By quantitating the amplitude of the unbounded stress, the continuum fracture mechanics defines the stress intensity factor K to characterize the stress and displacement fields in the vicinity of the crack tip, thereby developing the relation between the stress singularity and surface energy (energy release rate G). This G-K relation, assigning physical meaning to the stress intensity factor, makes these two fracture parameters widely used in predicting the onset of crack propagation. However, due to the discrete nature of the atomistic structures without stress singularity, there might be discrepancy between the failure prediction and the reality of nanostructured materials. Defining …