Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Investigation Of Multi-Photon Excitation In Argon With Applications In Hypersonic Flow Diagnostics, Jack L. Mills Oct 2016

Investigation Of Multi-Photon Excitation In Argon With Applications In Hypersonic Flow Diagnostics, Jack L. Mills

Physics Theses & Dissertations

Non-intrusive flow diagnostics are essential for studying the physics of hypersonic flow wake regions. To advance the development of next generation hypersonic vehicles and to improve computational fluid dynamics techniques in the hypersonic regime, NASA needs a suitable non-intrusive diagnostic technique to measure velocity, density, and temperature. We will present our work on developing a seedless, non-intrusive diagnostic technique using excited state argon atoms, prepared via multi-photon excitation. In this dissertation, we report results on the first phase of this hypersonic wake measurement project. In particular, we have redesigned and characterized the performance of a high energy, nanosecond pulsed Ti:Sapphire …


Emergence Of Collective Light Scattering In Atomic 87Rb Samples, Kasie Jean Kemp Jul 2016

Emergence Of Collective Light Scattering In Atomic 87Rb Samples, Kasie Jean Kemp

Physics Theses & Dissertations

Over the past half century, atomic ensembles have been used to create sensors, clocks, and quantum information systems. As these devices become more compact, and as the number of atoms increases to improve the sensitivity for detection, the atomic samples are increasing in density and optical depth. As such, the spectroscopic properties of the atomic media are modified due to interactions among the particles in the ensemble. We report investigation of near-resonance light scattering from a cold atomic sample of 87Rb. Initially prepared in a magneto-optical trap, the atoms are loaded into a far-off-resonance optical dipole trap (FORT) in which …


Plasma Processing Of Superconducting Radio Frequency Cavities, Janardan Upadhyay Apr 2016

Plasma Processing Of Superconducting Radio Frequency Cavities, Janardan Upadhyay

Physics Theses & Dissertations

The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb …


Cebaf Upgrade Bunch Length Measurements, Mahmoud Mohamad Ali Ahmad Apr 2016

Cebaf Upgrade Bunch Length Measurements, Mahmoud Mohamad Ali Ahmad

Physics Theses & Dissertations

Many accelerators use short electron bunches and measuring the bunch length is important for efficient operations. CEBAF needs a suitable bunch length because bunches that are too long will result in beam interruption to the halls due to excessive energy spread and beam loss. In this work, bunch length is measured by invasive and non-invasive techniques at different beam energies. Two new measurement techniques have been commissioned; a harmonic cavity showed good results compared to expectations from simulation, and a real time interferometer is commissioned and first checkouts were performed. Three other techniques were used for measurements and comparison purposes …


Study Of Infrared Emission Spectroscopy For The B 1Δg- A 1Πu And B ′1Σg +- A 1Πu Systems Of C2, Wang Chen, Kentarou Kawaguchi, Peter F. Bernath, Jian Tang Feb 2016

Study Of Infrared Emission Spectroscopy For The B 1Δg- A 1Πu And B ′1Σg +- A 1Πu Systems Of C2, Wang Chen, Kentarou Kawaguchi, Peter F. Bernath, Jian Tang

Chemistry & Biochemistry Faculty Publications

Thirteen bands for the B1Δg-A1Πu system and eleven bands for the B′1Σg +-A1Πu system of C2 were identified in the Fourier transform infrared emission spectra of hydrocarbon discharges. The B′1Σg + v = 4 and the B1Δg v = 6, 7, and 8 vibrational levels involved in nine bands were studied for the first time. A direct global analysis with Dunham parameters was carried out satisfactorily for the B1Δg-A1Πu system except for a …


Uv Light-Induced Aggregation Of Titania Submicron Particles, Can Zhou, Yashar Bashirzadeh, Timothy A. Bernadowsky Jr., Xiaoyu Zhang Jan 2016

Uv Light-Induced Aggregation Of Titania Submicron Particles, Can Zhou, Yashar Bashirzadeh, Timothy A. Bernadowsky Jr., Xiaoyu Zhang

Mechanical & Aerospace Engineering Faculty Publications

In this study, aggregation of TiO2 (rutile and anatase) submicron particles in deionized (DI) water under ultra-violet (UV) light irradiation was investigated. While no aggregation was observed in the dark, rutile and anatase submicron particles started aggregating upon application of UV light and ceased aggregation in about 2 and 8.4 h, respectively. It has been demonstrated that UV light directly mitigated the particle mobility of TiO2, resulting in a neutralization effect of the Zeta potential. It was also observed that rutile particles aggregated much faster than anatase particles under UV radiation, indicating that the Zeta potential of …