Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Anisotropic Response Of Nanosized Bismuth Films Upon Femtosecond Laser Excitation Monitored By Ultrafast Electron Diffraction, Ahmed R. Esmail, Hani E. Elsayed-Ali Jan 2011

Anisotropic Response Of Nanosized Bismuth Films Upon Femtosecond Laser Excitation Monitored By Ultrafast Electron Diffraction, Ahmed R. Esmail, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The lattice response of 5 nm thick bismuth film to femtosecond laser excitation is probed by ultrafast electron diffraction. The transient decay time after laser excitation is greater for diffraction from (012) lattice planes compared to (110) planes and is reduced for both planes with the increased laser fluence. These results indicate that different energy coupling mechanisms to the lattice occur depending on the crystal direction. The behavior of the diffraction peak width indicates partial disorder of the film upon photoexcitation that increases together with the laser fluence. © 2011 American Institute of Physics. [doi:10.1063/1.3652919]


Low Temperature Epitaxial Growth Of Ge Quantum Dot On Si (100) - (2×1) By Femtosecond Laser Excitation, Ali Oguz Er, Wei Ren, Hani E. Elsayed-Ali Jan 2011

Low Temperature Epitaxial Growth Of Ge Quantum Dot On Si (100) - (2×1) By Femtosecond Laser Excitation, Ali Oguz Er, Wei Ren, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Low temperature epitaxy of Ge quantum dots on Si (100) - (2×1) by femtosecond pulsed laser deposition under femtosecond laser excitation was investigated. Reflection high-energy electron diffraction and atomic force microscopy were used to analyze the growth mode and morphology. Epitaxial growth was achieved at ∼70 °C by using femtosecond laser excitation of the substrate. A purely electronic mechanism of enhanced surface diffusion of the Ge adatoms is proposed. © 2011 American Institute of Physics. [doi:10.1063/1.3537813]