Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Old Dominion University

2011

Design

Articles 1 - 3 of 3

Full-Text Articles in Physics

Multipacting Analysis Of The Superconducting Parallel-Bar Cavity, Subashini De Silva, Jean R. Delayen Jan 2011

Multipacting Analysis Of The Superconducting Parallel-Bar Cavity, Subashini De Silva, Jean R. Delayen

Physics Faculty Publications

The superconducting parallel-bar cavity [1] is a deflecting/crabbing cavity with attractive properties, compared to other conventional designs, that is being considered for a number of applications. Multipacting can be a limiting factor to the performance of in any superconducting structure. In the parallel-bar cavity the main contribution to the deflection is due to the transverse deflecting voltage, between the parallel bars, making the design potentially prone to multipacting. This paper presents the results of analytical calculations and numerical simulations of multipacting in the parallel-bar cavity with resonant voltage, impact energies and corresponding particle trajectories.


Design Of Superconducting Parallel Bar Cavities For Deflecting/Crabbing Applications, Jean R. Delayen, Subashini De Silva Jan 2011

Design Of Superconducting Parallel Bar Cavities For Deflecting/Crabbing Applications, Jean R. Delayen, Subashini De Silva

Physics Faculty Publications

The superconducting parallel-bar cavity is a deflecting/ crabbing cavity with attractive properties, compared to other conventional designs, that is currently being considered for a number of applications. The new parallel-bar design with curved loading elements and circular or elliptical outer conductors have improved properties compared to the designs with rectangular outer conductors. We present the designs proposed as the deflecting cavities for the Jefferson Lab 12 GeV upgrade and for Project-X and crabbing cavities for the proposed LHC luminosity upgrade and electron-ion collider at Jefferson Lab.


Crab Crossing Schemes And Studies For Electron Ion Collider, S. Ahmed, Y. Derbenev, V. Morozov, A. Castilla, Geoffrey A. Krafft, B. Yunn, Subashini U. De Silva, Jean R. Delayen Jan 2011

Crab Crossing Schemes And Studies For Electron Ion Collider, S. Ahmed, Y. Derbenev, V. Morozov, A. Castilla, Geoffrey A. Krafft, B. Yunn, Subashini U. De Silva, Jean R. Delayen

Physics Faculty Publications

This report shows our progress in crab crossing consideration for future electron-ion collider envisioned at JLab. In this design phase, we are evaluating two crabbing schemes viz., the deflecting and dispersive. The mathematical formulations and lattice design for these schemes are discussed in this paper. Numerical simulations involving particle tracking through a realistic deflecting RF cavity and optics illustrate the desired crab tilt of 25 mrad for 1.35 MV. Evolution of beam propagation are shown which provides the physical insight of the crabbing phenomenon.