Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Old Dominion University

2011

Accelerator technology

Articles 1 - 2 of 2

Full-Text Articles in Physics

Design Of Superconducting Parallel-Bar Deflecting/Crabbing Cavities With Improved Properties, Jean R. Delayen, Subashini De Silva Jan 2011

Design Of Superconducting Parallel-Bar Deflecting/Crabbing Cavities With Improved Properties, Jean R. Delayen, Subashini De Silva

Physics Faculty Publications

The superconducting parallel-bar cavity is a deflecting/crabbing cavity with attractive properties, compared to other conventional designs, that is being considered for a number of applications. All designs to-date have been based on straight loading elements and rectangular outer conductors. We present new designs of parallel-bar cavities using curved loading elements and circular or elliptical outer conductors, with significantly improved properties such as reduced surface fields and wider higher-order mode separation.


Mechanical Study Of Superconducting Parallel-Bar Deflecting/Crabbing Cavities, Hyekyoung Park, Jean R. Delayen, Subashini De Silva Jan 2011

Mechanical Study Of Superconducting Parallel-Bar Deflecting/Crabbing Cavities, Hyekyoung Park, Jean R. Delayen, Subashini De Silva

Physics Faculty Publications

The superconducting parallel-bar deflecting/crabbing cavities have improved properties compared to conventional cavity structures. It is currently being considered for number of applications. The mechanical design analysis is performed on two designs of the 499 MHz parallel-bar deflecting cavity for the Jefferson Lab 12 GeV upgrade. The main purpose of the mechanical study is to examine the structural stability of the cavities under the operating conditions in the accelerators. The study results will suggest the need for additional structural strengthening. Also the study results will help to develop a concept of the tuning method. If the cavity is to be installed …