Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

Triple Coincidence Beam Spin Asymmetry Measurements In Deeply Virtual Compton Scattering, Mustafa Canan Apr 2011

Triple Coincidence Beam Spin Asymmetry Measurements In Deeply Virtual Compton Scattering, Mustafa Canan

Physics Theses & Dissertations

The Generalized Parton Distributions (GPDs) provides hitherto the most complete information about the quark structure of hadron. GPDs are accessible through hard-exclusive reactions, among which Deeply Virtual Compton Scattering (DVCS) is the cleanest reaction. A dedicated DVCS experiment on Hydrogen (E00-110) ran in the Hall A at Jefferson Laboratory in Fall 2004. I present here Beam Spin Asymmetry (BSA) results for the epepγ reaction studied in the E00-110 experiment with fully exclusive triple coincidence H(e, e'γp ) detection. I present a re-calibration of the electromagnetic calorimeter used to detect the high energy photon. This calibration …


Experimental Results In Dis, Sidis And Des From Jefferson Lab, Sebastian E. Kuhn Jan 2011

Experimental Results In Dis, Sidis And Des From Jefferson Lab, Sebastian E. Kuhn

Physics Faculty Publications

Jefferson Lab’s electron accelerator in its present incarnation, with a maximum beam energy slightly above 6 GeV, has already enabled a large number of experiments expanding our knowledge of nucleon and nuclear structure (especially in Deep Inelastic Scattering—DIS—at moderately high x, and in the resonance region). Several pioneering experiments have yielded first results on Deeply Virtual Compton Scattering (DVCS) and other Deep Exclusive Processes (DES), and the exploration of the rich landscape of transverse momentum‐dependent (TMD) structure functions using Semi‐Inclusive electron scattering (SIDIS) has begun. With the upgrade of CEBAF to 12 GeV now underway, a significantly larger kinematic …


Anisotropic Response Of Nanosized Bismuth Films Upon Femtosecond Laser Excitation Monitored By Ultrafast Electron Diffraction, Ahmed R. Esmail, Hani E. Elsayed-Ali Jan 2011

Anisotropic Response Of Nanosized Bismuth Films Upon Femtosecond Laser Excitation Monitored By Ultrafast Electron Diffraction, Ahmed R. Esmail, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The lattice response of 5 nm thick bismuth film to femtosecond laser excitation is probed by ultrafast electron diffraction. The transient decay time after laser excitation is greater for diffraction from (012) lattice planes compared to (110) planes and is reduced for both planes with the increased laser fluence. These results indicate that different energy coupling mechanisms to the lattice occur depending on the crystal direction. The behavior of the diffraction peak width indicates partial disorder of the film upon photoexcitation that increases together with the laser fluence. © 2011 American Institute of Physics. [doi:10.1063/1.3652919]


Evolution Of The Differential Transverse Momentum Correlation Function With Centrality In Au + Au Collisions At √Snn = 200 Gev, G. Agakishiev, M. M. Aggarwal, Z. Ahammed, A. V. Alakhverdyants, I. Alekseev, J. Alford, B. D. Anderson, C. D. Anson, D. Arhipkin, G. S. Averichev, S. Bültmann, D. Plyku Jan 2011

Evolution Of The Differential Transverse Momentum Correlation Function With Centrality In Au + Au Collisions At √Snn = 200 Gev, G. Agakishiev, M. M. Aggarwal, Z. Ahammed, A. V. Alakhverdyants, I. Alekseev, J. Alford, B. D. Anderson, C. D. Anson, D. Arhipkin, G. S. Averichev, S. Bültmann, D. Plyku

Physics Faculty Publications

We present first measurements of the evolution of the differential transverse momentum correlation function, C, with collision centrality in Au + Au interactions at √sNN = 200 GeV. This observable exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of C with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η / s , of the matter formed in central Au + Au interactions. We obtain an upper limit estimate of η / s …


Scaling Properties At Freeze-Out In Relativistic Heavy-Ion Collisions, M. M. Aggarwal, Z. Ahammed, A. V. Alakhverdyants, I. Alekseev, J. Alford, B. D. Anderson, S. Bueltmann, I. Koralt, D. Plyku, Star Collaboration Jan 2011

Scaling Properties At Freeze-Out In Relativistic Heavy-Ion Collisions, M. M. Aggarwal, Z. Ahammed, A. V. Alakhverdyants, I. Alekseev, J. Alford, B. D. Anderson, S. Bueltmann, I. Koralt, D. Plyku, Star Collaboration

Physics Faculty Publications

Identified charged pion, kaon, and proton spectra are used to explore the system size dependence of bulk freeze-out properties in Cu+Cu collisions at √sNN=200 and 62.4 GeV. The data are studied with hydrodynamically motivated blast-wave and statistical model frameworks in order to characterize the freeze-out properties of the system. The dependence of freeze-out parameters on beam energy and collision centrality is discussed. Using the existing results from Au + Au and pp collisions, the dependence of freeze-out parameters on the system size is also explored. This multidimensional systematic study furthers our understanding of the QCD phase diagram revealing the importance …


Two-Body Photodisintegration Of 3he Between 7 And 16 Mev, W. Tornow, H. J. Karwowski, J. H. Kelley, R. Raut, G. Rusev, S. C. Stave, A. P. Tonchev, A. Deltuva, A. C. Fonseca, L. E. Marcucci, R. Schiavilla Jan 2011

Two-Body Photodisintegration Of 3he Between 7 And 16 Mev, W. Tornow, H. J. Karwowski, J. H. Kelley, R. Raut, G. Rusev, S. C. Stave, A. P. Tonchev, A. Deltuva, A. C. Fonseca, L. E. Marcucci, R. Schiavilla

Physics Faculty Publications

A comprehensive data set is reported for the two-body photodisintegration cross section of 3He using mono-energetic photon beams at eleven energies between 7.0 and 16.0 MeV. A 3He + Xe high-pressure gas scintillator served as target and detector. Although our data are in much better agreement with our state-of-the-art theoretical calculations than the majority of the previous data, these calculations underpredict the new data by about 10%. This disagreement suggests an incomplete understanding of the dynamics of the three-nucleon system and its response to electromagnetic probes.


Conceptual Design Of A Polarized Medium Energy Electron-Ion Collider At Jlab, S. Ahmed, A. Bogacz, Ya. Derbenev, A. Hutton, Geoffrey Krafft, R. Li, V. Morozov, F. Pilat, R. Rimmer, Y. Roblin, T. Satogata, M. Spata, B. Terzić, M. Tiefenback, H. Wang, B. Yunn, Y. Zhang, P. Chetsov, Jean R. Delayen, Subashini Desilva, Hisham Sayed, V. Dudnikov, R. Johnson, F. Marhauser, M. Sullivan, S. Manikonda, P. N. Ostroumov, S. Abeyratne, B. Erdelyi, Y. Kim, A. Kondratenko Jan 2011

Conceptual Design Of A Polarized Medium Energy Electron-Ion Collider At Jlab, S. Ahmed, A. Bogacz, Ya. Derbenev, A. Hutton, Geoffrey Krafft, R. Li, V. Morozov, F. Pilat, R. Rimmer, Y. Roblin, T. Satogata, M. Spata, B. Terzić, M. Tiefenback, H. Wang, B. Yunn, Y. Zhang, P. Chetsov, Jean R. Delayen, Subashini Desilva, Hisham Sayed, V. Dudnikov, R. Johnson, F. Marhauser, M. Sullivan, S. Manikonda, P. N. Ostroumov, S. Abeyratne, B. Erdelyi, Y. Kim, A. Kondratenko

Physics Faculty Publications

A medium energy electron-ion collider is envisioned as the primary future of the JLab nuclear science program beyond the 12 GeV upgraded CEBAF. The present conceptual design selects a ring-ring collider option, covers a CM energy range up to 65 GeV for collisions of polarized electrons with polarized light ions or unpolarized light to heavy ions, and reaches a luminosity at above 1034 cm-2s-1 per detector over multiple interaction points. This paper presents a brief description of the current conceptual design of the accelerator.


Precise Measurements Of Beam Spin Asymmetries In Semi-Inclusive Π0 Production, M. Aghasyan, H. Avakian, P. Rossi, E. De Sanctis, D. Hasch, M. Mirazita, D. Adikaram, M. J. Amaryan, M. Anghinolfi, H. Baghdasaryan, R. P. Bennett, S. Bültmann, G. E. Dodge, C. E. Hyde, A. Klein, S. E. Kuhn, M. Mayer, H. Seraydaryan, L. B. Weinstein Jan 2011

Precise Measurements Of Beam Spin Asymmetries In Semi-Inclusive Π0 Production, M. Aghasyan, H. Avakian, P. Rossi, E. De Sanctis, D. Hasch, M. Mirazita, D. Adikaram, M. J. Amaryan, M. Anghinolfi, H. Baghdasaryan, R. P. Bennett, S. Bültmann, G. E. Dodge, C. E. Hyde, A. Klein, S. E. Kuhn, M. Mayer, H. Seraydaryan, L. B. Weinstein

Physics Faculty Publications

We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sin phi(h) amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle φh of the produced neutral pion. The dependence of this amplitude on Bjorken x and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations. (C) 2011 Elsevier B.V.


Photoproduction Of The Φ(1020) Meson In Neutral Decay Mode Γp → Φp → K(S)K(L)P, Heghine Seraydaryan Jan 2011

Photoproduction Of The Φ(1020) Meson In Neutral Decay Mode Γp → Φp → K(S)K(L)P, Heghine Seraydaryan

Physics Theses & Dissertations

The Φ(1020) meson photoproduction cross sections in the neutral decay mode Φ → KSKL are measured for the first time. This work presents measurements of differential cross sections, dσ/dt, dσ/d cos θΦc.m.; Φ decay angular distributions, W(cos θ) and W(Φ), and spin-density matrix elements, ρ0, in the Helicity and Gottfried-Jackson frames, in the energy range 1.6 GeV < Eγ < 2.6 GeV. We analyzed the photoproduction data of the g11a experiment collected on an LH2 target using the CLAS detectector at Hall B, TJNAF. The measured cross sections show some differences from the charged decay mode Φ → K+ K.