Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Excitation-Induced Ge Quantum Dot Growth On Si(100)-2x1 By Pulsed Laser Deposition, Ali Oguz Er Jul 2011

Excitation-Induced Ge Quantum Dot Growth On Si(100)-2x1 By Pulsed Laser Deposition, Ali Oguz Er

Physics Theses & Dissertations

Self-assembled Ge quantum dots (QD) are grown on Si(100)-(2×1) with laser excitation during growth processes by pulsed laser deposition (PLD). In situ reflection-high energy electron diffraction (RHEED) and post-deposition atomic force microscopy (AFM) are used to study the growth dynamics and morphology of the QDs. A Q-switched Nd:YAG laser (λ = 1064 nm, 40 ns pulse width, 5 J/cm2 fluence, and 10 Hz repetition rate) were used to ablate germanium and irradiate the silicon substrate. Ge QD formation on Si(100)-(2×1) with different substrate temperatures and excitation laser energy densities was studied. The excitation laser reduces the epitaxial growth temperature …


Section Abstracts: Astronomy, Mathematics And Physics With Materials Science Apr 2011

Section Abstracts: Astronomy, Mathematics And Physics With Materials Science

Virginia Journal of Science

Abstracts for the Astronomy, Mathematics, and Physics with Materials Science Section for the 89th Annual Meeting of the Virginia Academy of Science, May 25-27, 2011, University of Richmond, Richmond VA.


Analysis Of Interband, Intraband, And Plasmon Polariton Transitions In Silver Nanoparticle Films Via In Situ Real-Time Spectroscopic Ellipsometry, S. A. Little, R. W. Collins, S. Marsillac Mar 2011

Analysis Of Interband, Intraband, And Plasmon Polariton Transitions In Silver Nanoparticle Films Via In Situ Real-Time Spectroscopic Ellipsometry, S. A. Little, R. W. Collins, S. Marsillac

Electrical & Computer Engineering Faculty Publications

The dielectric function of Ag nanoparticle films, deduced from an analysis of in situ real-time spectroscopic ellipsometry (RTSE) measurements, is found to evolve with time during deposition in close consistency with the film structure, deduced in the same RTSE analysis. In the nucleation regime, the intraband dielectric function component is absent and plasmon polariton behavior dominates. Only at nuclei contact, does the intraband amplitude appear, increasing above zero. Both intraband and plasmon amplitudes coexist during surface smoothening associated with coalescence. The intraband relaxation time increases rapidly after surface smoothening is complete, also in consistency with the thin film structural evolution.


Low Temperature Epitaxial Growth Of Ge Quantum Dot On Si (100) - (2×1) By Femtosecond Laser Excitation, Ali Oguz Er, Wei Ren, Hani E. Elsayed-Ali Jan 2011

Low Temperature Epitaxial Growth Of Ge Quantum Dot On Si (100) - (2×1) By Femtosecond Laser Excitation, Ali Oguz Er, Wei Ren, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Low temperature epitaxy of Ge quantum dots on Si (100) - (2×1) by femtosecond pulsed laser deposition under femtosecond laser excitation was investigated. Reflection high-energy electron diffraction and atomic force microscopy were used to analyze the growth mode and morphology. Epitaxial growth was achieved at ∼70 °C by using femtosecond laser excitation of the substrate. A purely electronic mechanism of enhanced surface diffusion of the Ge adatoms is proposed. © 2011 American Institute of Physics. [doi:10.1063/1.3537813]


Nonuniformity In Lattice Contraction Of Bismuth Nanoclusters Heated Near Its Melting Point, A. Esmail, M. Abdel-Fattah, Hani E. Elsayed-Ali Jan 2011

Nonuniformity In Lattice Contraction Of Bismuth Nanoclusters Heated Near Its Melting Point, A. Esmail, M. Abdel-Fattah, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The structural properties of bismuth nanoclusters were investigated with transmission high-energy electron diffraction from room temperature up to 525 ± 6 K. The Bi nanoclusters were fabricated by thermal evaporation at room temperature on transmission electron microscope grids coated with an ultrathin carbon film, followed by thermal and femtosecond laser annealing. The annealed sample had an average cluster size of ∼14 nm along the minor axis and ∼16 nm along the major axis. The Debye temperature of the annealed nanoclusters was found to be 53 ± 6 K along the [012] direction and 86 ± 9 K along the [110] …


Electronically Enhanced Surface Diffusion During Ge Growth On Si(100), Ali Orguz Er, Hani E. Elsayed-Ali Jan 2011

Electronically Enhanced Surface Diffusion During Ge Growth On Si(100), Ali Orguz Er, Hani E. Elsayed-Ali

Physics Faculty Publications

The effect of nanosecond pulsed laser excitation on surface diffusion during the growth of Ge on Si(100) at 250 °C was studied. In situ reflection high-energy electron diffraction was used to measure the surface diffusion coefficient while ex situ atomic force microscopy was used to probe the structure and morphology of the grown quantum dots. The results show that laser excitation of the substrate increases the surface diffusion during the growth of Ge on Si(100), changes the growth morphology, improves the crystalline structure of the grown quantum dots, and decreases their size distribution. A purely electronic mechanism of enhanced surface …


Precise Control Of Highly Ordered Arrays Of Nested Semiconductor/Metal Nanotubes, Diefeng Gu, Helmut Baumgart, Kandabara Tapily, Pragya Shrestha, Gon Namkoong, Xianyu Ao, Frank Müller Jan 2011

Precise Control Of Highly Ordered Arrays Of Nested Semiconductor/Metal Nanotubes, Diefeng Gu, Helmut Baumgart, Kandabara Tapily, Pragya Shrestha, Gon Namkoong, Xianyu Ao, Frank Müller

Electrical & Computer Engineering Faculty Publications

Lithographically defined microporous templates in conjunction with the atomic layer deposition (ALD) technique enable remarkable control of complex novel nested nanotube structures. So far three-dimensional control of physical process parameters has not been fully realized with high precision resolution, and requires optimization in order to achieve a wider range of potential applications. Furthermore, the combination of composite insulating oxide layers alternating with semiconducting layers and metals can provide various types of novel applications and eventually provide unique and advanced levels of multifunctional nanoscale devices. Semiconducting TiO2 nanotubes have potential applications in photovoltaic devices. The combination of nanostructured semiconducting materials …