Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Physics

Excitation-Induced Ge Quantum Dot Growth On Si(100)-2x1 By Pulsed Laser Deposition, Ali Oguz Er Jul 2011

Excitation-Induced Ge Quantum Dot Growth On Si(100)-2x1 By Pulsed Laser Deposition, Ali Oguz Er

Physics Theses & Dissertations

Self-assembled Ge quantum dots (QD) are grown on Si(100)-(2×1) with laser excitation during growth processes by pulsed laser deposition (PLD). In situ reflection-high energy electron diffraction (RHEED) and post-deposition atomic force microscopy (AFM) are used to study the growth dynamics and morphology of the QDs. A Q-switched Nd:YAG laser (λ = 1064 nm, 40 ns pulse width, 5 J/cm2 fluence, and 10 Hz repetition rate) were used to ablate germanium and irradiate the silicon substrate. Ge QD formation on Si(100)-(2×1) with different substrate temperatures and excitation laser energy densities was studied. The excitation laser reduces the epitaxial growth temperature …


Perfectly Matched Layer Absorbing Boundary Conditions For The Discrete Velocity Boltzmann-Bgk Equation, Elena Craig Jul 2011

Perfectly Matched Layer Absorbing Boundary Conditions For The Discrete Velocity Boltzmann-Bgk Equation, Elena Craig

Mathematics & Statistics Theses & Dissertations

Perfectly Matched Layer (PML) absorbing boundary conditions were first proposed by Berenger in 1994 for the Maxwell's equations of electromagnetics. Since Hu first applied the method to Euler's equations in 1996, progress made in the application of PML to Computational Aeroacoustics (CAA) includes linearized Euler equations with non-uniform mean flow, non-linear Euler equations, flows with an arbitrary mean flow direction, and non-linear clavier-Stokes equations. Although Boltzmann-BGK methods have appeared in the literature and have been shown capable of simulating aeroacoustics phenomena, very little has been done to develop absorbing boundary conditions for these methods. The purpose of this work was …


Section Abstracts: Astronomy, Mathematics And Physics With Materials Science Apr 2011

Section Abstracts: Astronomy, Mathematics And Physics With Materials Science

Virginia Journal of Science

Abstracts for the Astronomy, Mathematics, and Physics with Materials Science Section for the 89th Annual Meeting of the Virginia Academy of Science, May 25-27, 2011, University of Richmond, Richmond VA.


Characterizations Of Atmospheric Pressure Low Temperature Plasma Jets And Their Applications, Erdinc Karakas Apr 2011

Characterizations Of Atmospheric Pressure Low Temperature Plasma Jets And Their Applications, Erdinc Karakas

Electrical & Computer Engineering Theses & Dissertations

Atmospheric pressure low temperature plasma jets (APLTPJs) driven by short pulses have recently received great attention because of their potential in biomedical and environmental applications. This potential is due to their user-friendly features, such as low temperature, low risk of arcing, operation at atmospheric pressure, easy handheld operation, and low concentration of ozone generation. Recent experimental observations indicate that an ionization wave exists and propagates along the plasma jet. The plasma jet created by this ionization wave is not a continuous medium but rather consists of a bullet-like-structure known as "Plasma Bullet". More interestingly, these plasma bullets actually have a …


Synthesis Of Ald Zinc Oxide And Thin Film Materials Optimization For Uv Photodetector Applications, Kandabara Nouhoum Tapily Apr 2011

Synthesis Of Ald Zinc Oxide And Thin Film Materials Optimization For Uv Photodetector Applications, Kandabara Nouhoum Tapily

Electrical & Computer Engineering Theses & Dissertations

Zinc oxide (ZnO) is a direct, wide bandgap semiconductor material. It is thermodynamically stable in the wurtzite structure at ambient temperature conditions. ZnO has very interesting optical and electrical properties and is a suitable candidate for numerous optoelectronic applications such as solar cells, LEDs and UV-photodetectors. ZnO is a naturally n-type semiconductor. Due to the lack of reproducible p-type ZnO, achieving good homojunction ZnO-based photodiodes such as UV-photodetectors remains a challenge. Meanwhile, heterojunction structures of ZnO with p-type substrates such as SiC, GaN, NiO, AlGaN, Si etc. are used; however, those heterojunction diodes suffer from low efficiencies. ZnO is an …


Compensation Techniques In Accelerator Physics, Hisham Kamal Sayed Apr 2011

Compensation Techniques In Accelerator Physics, Hisham Kamal Sayed

Physics Theses & Dissertations

Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two …


Analysis Of Interband, Intraband, And Plasmon Polariton Transitions In Silver Nanoparticle Films Via In Situ Real-Time Spectroscopic Ellipsometry, S. A. Little, R. W. Collins, S. Marsillac Mar 2011

Analysis Of Interband, Intraband, And Plasmon Polariton Transitions In Silver Nanoparticle Films Via In Situ Real-Time Spectroscopic Ellipsometry, S. A. Little, R. W. Collins, S. Marsillac

Electrical & Computer Engineering Faculty Publications

The dielectric function of Ag nanoparticle films, deduced from an analysis of in situ real-time spectroscopic ellipsometry (RTSE) measurements, is found to evolve with time during deposition in close consistency with the film structure, deduced in the same RTSE analysis. In the nucleation regime, the intraband dielectric function component is absent and plasmon polariton behavior dominates. Only at nuclei contact, does the intraband amplitude appear, increasing above zero. Both intraband and plasmon amplitudes coexist during surface smoothening associated with coalescence. The intraband relaxation time increases rapidly after surface smoothening is complete, also in consistency with the thin film structural evolution.


Ignition Of A Large Volume Plasma With A Plasma Jet, M. Laroussi, M. A. Akman Jan 2011

Ignition Of A Large Volume Plasma With A Plasma Jet, M. Laroussi, M. A. Akman

Electrical & Computer Engineering Faculty Publications

Here we report on a method to generate a long plasma plume and to ignite a large volume plasma by means of the jet. The plasma plume is generated by our tube reactor and then introduced into a chamber where the pressure is controlled. We discovered there are three operating phases:Aphasewhere the plume length remains approximately constant, followed by a second phase where the jet increases in length as the pressure decreases. Then at pressures below 70 Torr a mode transition occurs where the plume length decreases and the plasma expands until the entire chamber is filled.


The Influence Of Pressure Relaxation On The Structure Of An Axial Vortex, Robert L. Ash, Irfan Zardadkhan, Allan J. Zuckerwar Jan 2011

The Influence Of Pressure Relaxation On The Structure Of An Axial Vortex, Robert L. Ash, Irfan Zardadkhan, Allan J. Zuckerwar

Mechanical & Aerospace Engineering Faculty Publications

Governing equations including the effects of pressure relaxation have been utilized to study an incompressible, steady-state viscous axial vortex with specified far-field circulation. When sound generation is attributed to a velocity gradient tensor-pressure gradient product, the modified conservation of momentum equations that result yield an exact solution for a steady, incompressible axial vortex. The vortex velocity profile has been shown to closely approximate experimental vortex measurements in air and water over a wide range of circulation-based Reynolds numbers. The influence of temperature and humidity on the pressure relaxation coefficient in air has been examined using theoretical and empirical approaches, and …


A Cell Electrofusion Microfluidic Device Integrated With 3d Thin-Film Microelectrode Arrays, Ning Hu, Jun Yang, Shizhi Qian, Sang W. Joo, Xiaolin Zheng Jan 2011

A Cell Electrofusion Microfluidic Device Integrated With 3d Thin-Film Microelectrode Arrays, Ning Hu, Jun Yang, Shizhi Qian, Sang W. Joo, Xiaolin Zheng

Mechanical & Aerospace Engineering Faculty Publications

A microfluidic device integrated with 3D thin film microelectrode arrays wrapped around serpentine-shaped microchannel walls has been designed, fabricated and tested for cell electrofusion. Each microelectrode array has 1015 discrete microelectrodes patterned on each side wall, and the adjacent microelectrodes are separated by coplanar dielectric channel wall. The device was tested to electrofuse K562 cells under a relatively low voltage. Under an AC electric field applied between the pair of the microelectrode arrays, cells are paired at the edge of each discrete microelectrode due to the induced positive dielectrophoresis. Subsequently, electric pulse signals are sequentially applied between the microelectrode arrays …


Poincare Recurrence And Spectral Cascades In Three-Dimensional Quantum Turbulence, George Vahala, Jeffrey Yepez, Linda L. Vahala, Min Soe, Bo Zhang, Sean Ziegeler Jan 2011

Poincare Recurrence And Spectral Cascades In Three-Dimensional Quantum Turbulence, George Vahala, Jeffrey Yepez, Linda L. Vahala, Min Soe, Bo Zhang, Sean Ziegeler

Electrical & Computer Engineering Faculty Publications

The time evolution of the ground state wave function of a zero-temperature Bose-Einstein condensate (BEC) gas is well described by the Hamiltonian Gross-Pitaevskii (GP) equation. Using a set of appropriately interleaved unitary collision-stream operators, a qubit lattice gas algorithm is devised, which on taking moments, recovers the Gross-Pitaevskii (GP) equation under diffusion ordering (time scales as length2). Unexpectedly, there is a class of initial states whose Poincaré recurrence time is extremely short and which, as the grid resolution is increased, scales with diffusion ordering (and not as length3). The spectral results of J. Yepez et al. …


Localized Surface Plasmon Resonance Of Single Silver Nanoparticles Studied By Dark-Field Optical Microscopy And Spectroscopy, Wei Cao, Tao Huang, Xiao-Hong Nancy Xu, Hani E. Elsayed-Ali Jan 2011

Localized Surface Plasmon Resonance Of Single Silver Nanoparticles Studied By Dark-Field Optical Microscopy And Spectroscopy, Wei Cao, Tao Huang, Xiao-Hong Nancy Xu, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Localized surface plasmon resonance (LSPR) of Ag nanoparticles (NPs) with different shapes and disk-shaped Ag NP pairs with varying interparticle distance is studied using dark-field optical microscopy and spectroscopy (DFOMS). Disk-, square-, and triangular-shaped Ag NPs were fabricated on indium tin oxide-coated glass substrates by electron beam lithography. The LSPR spectra collected from single Ag NPs within 5×5 arrays using DFOMS exhibited pronounced redshifts as the NP shape changed from disk to square and to triangular. The shape-dependent experimental LSPR spectra are in good agreement with simulations using the discrete dipole approximation model, although there are small deviations in the …


Low Temperature Epitaxial Growth Of Ge Quantum Dot On Si (100) - (2×1) By Femtosecond Laser Excitation, Ali Oguz Er, Wei Ren, Hani E. Elsayed-Ali Jan 2011

Low Temperature Epitaxial Growth Of Ge Quantum Dot On Si (100) - (2×1) By Femtosecond Laser Excitation, Ali Oguz Er, Wei Ren, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Low temperature epitaxy of Ge quantum dots on Si (100) - (2×1) by femtosecond pulsed laser deposition under femtosecond laser excitation was investigated. Reflection high-energy electron diffraction and atomic force microscopy were used to analyze the growth mode and morphology. Epitaxial growth was achieved at ∼70 °C by using femtosecond laser excitation of the substrate. A purely electronic mechanism of enhanced surface diffusion of the Ge adatoms is proposed. © 2011 American Institute of Physics. [doi:10.1063/1.3537813]


Nonuniformity In Lattice Contraction Of Bismuth Nanoclusters Heated Near Its Melting Point, A. Esmail, M. Abdel-Fattah, Hani E. Elsayed-Ali Jan 2011

Nonuniformity In Lattice Contraction Of Bismuth Nanoclusters Heated Near Its Melting Point, A. Esmail, M. Abdel-Fattah, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The structural properties of bismuth nanoclusters were investigated with transmission high-energy electron diffraction from room temperature up to 525 ± 6 K. The Bi nanoclusters were fabricated by thermal evaporation at room temperature on transmission electron microscope grids coated with an ultrathin carbon film, followed by thermal and femtosecond laser annealing. The annealed sample had an average cluster size of ∼14 nm along the minor axis and ∼16 nm along the major axis. The Debye temperature of the annealed nanoclusters was found to be 53 ± 6 K along the [012] direction and 86 ± 9 K along the [110] …


Electronically Enhanced Surface Diffusion During Ge Growth On Si(100), Ali Orguz Er, Hani E. Elsayed-Ali Jan 2011

Electronically Enhanced Surface Diffusion During Ge Growth On Si(100), Ali Orguz Er, Hani E. Elsayed-Ali

Physics Faculty Publications

The effect of nanosecond pulsed laser excitation on surface diffusion during the growth of Ge on Si(100) at 250 °C was studied. In situ reflection high-energy electron diffraction was used to measure the surface diffusion coefficient while ex situ atomic force microscopy was used to probe the structure and morphology of the grown quantum dots. The results show that laser excitation of the substrate increases the surface diffusion during the growth of Ge on Si(100), changes the growth morphology, improves the crystalline structure of the grown quantum dots, and decreases their size distribution. A purely electronic mechanism of enhanced surface …


Precise Control Of Highly Ordered Arrays Of Nested Semiconductor/Metal Nanotubes, Diefeng Gu, Helmut Baumgart, Kandabara Tapily, Pragya Shrestha, Gon Namkoong, Xianyu Ao, Frank Müller Jan 2011

Precise Control Of Highly Ordered Arrays Of Nested Semiconductor/Metal Nanotubes, Diefeng Gu, Helmut Baumgart, Kandabara Tapily, Pragya Shrestha, Gon Namkoong, Xianyu Ao, Frank Müller

Electrical & Computer Engineering Faculty Publications

Lithographically defined microporous templates in conjunction with the atomic layer deposition (ALD) technique enable remarkable control of complex novel nested nanotube structures. So far three-dimensional control of physical process parameters has not been fully realized with high precision resolution, and requires optimization in order to achieve a wider range of potential applications. Furthermore, the combination of composite insulating oxide layers alternating with semiconducting layers and metals can provide various types of novel applications and eventually provide unique and advanced levels of multifunctional nanoscale devices. Semiconducting TiO2 nanotubes have potential applications in photovoltaic devices. The combination of nanostructured semiconducting materials …


Coupled Photonic Crystal Micro-Cavities With Ultra-Low Threshold Power For Stiumulated Raman Scattering, Qiang Liu, Zhengbiao Ouyang, Sacharia Albin Jan 2011

Coupled Photonic Crystal Micro-Cavities With Ultra-Low Threshold Power For Stiumulated Raman Scattering, Qiang Liu, Zhengbiao Ouyang, Sacharia Albin

Electrical & Computer Engineering Faculty Publications

We propose coupled cavities to realize a strong enhancement of the Raman scattering. Five sub cavities are embedded in the photonic crystals. Simulations through finite-difference time-domain (FDTD) method demonstrate that one cavity, which is used to propagate the pump beam at the optical-communication wavelength, has a Q factor as high as 1.254 × 108 and modal volume as small as 0.03μm3 (0.3192(λ/n)3). These parameters result in ultra-small threshold lasing power ~17.7nW and 2.58nW for Stokes and anti-Stokes respectively. The cavities are designed to support the required Stokes and anti-Stokes modal spacing in silicon. The proposed structure …


Scaling Properties At Freeze-Out In Relativistic Heavy-Ion Collisions, M. M. Aggarwal, Z. Ahammed, A. V. Alakhverdyants, I. Alekseev, J. Alford, B. D. Anderson, S. Bueltmann, I. Koralt, D. Plyku, Star Collaboration Jan 2011

Scaling Properties At Freeze-Out In Relativistic Heavy-Ion Collisions, M. M. Aggarwal, Z. Ahammed, A. V. Alakhverdyants, I. Alekseev, J. Alford, B. D. Anderson, S. Bueltmann, I. Koralt, D. Plyku, Star Collaboration

Physics Faculty Publications

Identified charged pion, kaon, and proton spectra are used to explore the system size dependence of bulk freeze-out properties in Cu+Cu collisions at √sNN=200 and 62.4 GeV. The data are studied with hydrodynamically motivated blast-wave and statistical model frameworks in order to characterize the freeze-out properties of the system. The dependence of freeze-out parameters on beam energy and collision centrality is discussed. Using the existing results from Au + Au and pp collisions, the dependence of freeze-out parameters on the system size is also explored. This multidimensional systematic study furthers our understanding of the QCD phase diagram revealing the importance …