Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 69

Full-Text Articles in Physics

Extracting The Number Of Short Range Correlated Nucleon Pairs From Inclusive Electron Scattering Data, R. Weiss, A. W. Denniston, J. R. Pybus, O. Hen, E. Piasetzky, A. Schmidt, L. B. Weinstein, N. Barnea Mar 2021

Extracting The Number Of Short Range Correlated Nucleon Pairs From Inclusive Electron Scattering Data, R. Weiss, A. W. Denniston, J. R. Pybus, O. Hen, E. Piasetzky, A. Schmidt, L. B. Weinstein, N. Barnea

Physics Faculty Publications

The extraction of the relative abundances of short-range correlated (SRC) nucleon pairs from inclusive electron scattering is studied using the generalized contact formalism (GCF) with several nuclear interaction models. GCF calculations can reproduce the observed scaling of the cross-section ratios for nuclei relative to deuterium at high xB and large Q2, a2 = (σA/A)/(σd/2). In the nonrelativistic instant-form formulation, the calculation is very sensitive to the model parameters and only reproduces the data using parameters that are inconsistent with ab initio many-body calculations. Using a light-cone GCF formulation significantly decreases this sensitivity …


Redesign Of The Jefferson Lab -300 Kv Dc Photo-Gun For High Bunch Charge Operations, S.A.K. Wijethunga, J. Benesch, Jean R. Delayen, C. Hernandez-Garcia, Geoffrey A. Krafft, Gabriel Palacios-Serrano, M.A. Mamun, M. Poelker, R. Suleiman Jan 2021

Redesign Of The Jefferson Lab -300 Kv Dc Photo-Gun For High Bunch Charge Operations, S.A.K. Wijethunga, J. Benesch, Jean R. Delayen, C. Hernandez-Garcia, Geoffrey A. Krafft, Gabriel Palacios-Serrano, M.A. Mamun, M. Poelker, R. Suleiman

Physics Faculty Publications

Production of high bunch charge beams for the ElectronIon Collider (EIC) is a challenging task. High bunch charge (a few nC) electron beam studies at Jefferson Lab using an inverted insulator DC high voltage photo-gun showed evidence of space charge limitations starting at 0.3 nC, limiting the maximum delivered bunch charge to 0.7 nC for beam at -225 kV, 75 ps (FWHM) pulse width, and 1.64 mm (rms) laser spot size. The low extracted charge is due to the modest longitudinal electric field (Ez) at the photocathode leading to beam loss at the anode and downstream beam pipe. To reach …


A Hard X-Ray Compton Source At Cbeta, K.E. Deitrick, J. Crone, C. Franck, G.H. Hoffstaetter, Geoffrey A. Krafft, B. D. Muratori, H. L. Owen, Balša Terzić, P. H. Williams Jan 2021

A Hard X-Ray Compton Source At Cbeta, K.E. Deitrick, J. Crone, C. Franck, G.H. Hoffstaetter, Geoffrey A. Krafft, B. D. Muratori, H. L. Owen, Balša Terzić, P. H. Williams

Physics Faculty Publications

Inverse Compton scattering (ICS) holds the potential for future high flux, narrow bandwidth x-ray sources driven by high quality, high repetition rate electron beams. CBETA, the Cornell-BNL Energy recovery linac (ERL) Test Accelerator, is the world’s first superconducting radiofrequency multi-turn ERL, with a maximum energy of 150 MeV, capable of ICS production of x-rays above 400 keV. We present an update on the bypass design and anticipated parameters of a compact ICS source at CBETA. X-ray parameters from the CBETA ICS are compared to those of leading synchrotron radiation facilities, demonstrating that, above a few hundred keV, photon beams produced …


Solutions For Fermi Questions, March 2021, Larry Weinstein Jan 2021

Solutions For Fermi Questions, March 2021, Larry Weinstein

Physics Faculty Publications

No abstract provided.


P-Wave Nucleon-Pion Scattering Amplitude In The Δ(1232) Channel From Lattice Qcd, Giorgio Silvi, Srijit Paul, Constantia Alexandrou, Stefan Krieg, Luka Leskovec, Stefan Meinel, John Negele, Marcus Petschlies, Andrew Pochinsky, Gumaro Rendon, Sergey Syritsyn, Antonio Todaro Jan 2021

P-Wave Nucleon-Pion Scattering Amplitude In The Δ(1232) Channel From Lattice Qcd, Giorgio Silvi, Srijit Paul, Constantia Alexandrou, Stefan Krieg, Luka Leskovec, Stefan Meinel, John Negele, Marcus Petschlies, Andrew Pochinsky, Gumaro Rendon, Sergey Syritsyn, Antonio Todaro

Physics Faculty Publications

We determine the Δ(1232) resonance parameters using lattice QCD and the Lüscher method. The resonance occurs in elastic pion-nucleon scattering with JP = 3/2+ in the isospin I=3/2, P-wave channel. Our calculation is performed with Nf = 2+1 flavors of clover fermions on a lattice with L ≈ 2.8 fm. The pion and nucleon masses are mπ = 255.4 (1.6) MeV and mN = 1073(5) MeV, respectively, and the strong decay channel Δ → πN is found to be above the threshold. To thoroughly map out the energy dependence of the nucleon-pion …


Hom Damper Design For Bnl Eic 197mhz Crab Cavity, Binping Xiao, Jean R. Delayen, Subashini U. De Silva, Z. Li, R. Rimmer, S. Verdu-Andres, Qiong Wu Jan 2021

Hom Damper Design For Bnl Eic 197mhz Crab Cavity, Binping Xiao, Jean R. Delayen, Subashini U. De Silva, Z. Li, R. Rimmer, S. Verdu-Andres, Qiong Wu

Physics Faculty Publications

The interaction region (IR) crab cavity system is a special RF system to compensate the loss of luminosity due to a 25 mrad crossing angle at the interaction point (IP) for Brookhaven National Lab electron ion collider (BNL EIC). There will be six crab cavities, with four 197 MHz crab cavities and two 394 MHz crab cavities, installed on each side of the IP in the proton/ion ring, and one 394 MHz crab cavity on each side of the IP in the electron ring. Both rings share identical 394 MHz crab cavity design to minimize the cost and risk in …


A Proposed Beam-Beam Test Facility Combine, E. Nissen, Geoffrey Krafft, Jean Delayen Jan 2021

A Proposed Beam-Beam Test Facility Combine, E. Nissen, Geoffrey Krafft, Jean Delayen

Physics Faculty Publications

The COmpact Machine for Beam-beam Interactions in Non-Equilibrium systems (COMBINE) is a proposed, dedicated, beam-beam test facility. The base design would make use of a pair of identical octagonal rings (2.5 meters per side) one rotated 180 degrees from the other, meeting at their common interaction point. These would be fed by an electron gun producing up to 125 keV electrons. The low energy will allow for beam-beam tune shifts commensurate with existing colliders, some linac-ring type systems, and will also allow for an exploration of the predicted effects of gear-changing, which would be performed using a variable pathlength scheme. …


The Concept And Applications Of A Dual Energy Storage Ring, Bhawin Dital, Andrew Hutton, Geoffrey Krafft, Fanglei Lin, Vasiliy Morozov, Yuhong Zhang Jan 2021

The Concept And Applications Of A Dual Energy Storage Ring, Bhawin Dital, Andrew Hutton, Geoffrey Krafft, Fanglei Lin, Vasiliy Morozov, Yuhong Zhang

Physics Faculty Publications

A dual energy electron storage ring configuration is initially proposed as an electron cooler to cool the ion beam in a collider. It consists of two energy loops, the electron beam in the high energy loop undergoes the synchrotron radiation damping to obtain the desired beam property and the beam in the low energy loop is for cooling of the ion beam. The two different energy loops are connected by an energy recovery linac. A lattice design of such a dual energy storage ring has been completed and beam stability conditions are established. We performed numerical simulations to demonstrate the …


Nb3Sn Coating Of Twin Axis Cavity For Srf Applications, J. K. Tiskumara, Jean R. Delayen, G. V. Eremeev, U. Pudasaini, C. E. Reece Jan 2021

Nb3Sn Coating Of Twin Axis Cavity For Srf Applications, J. K. Tiskumara, Jean R. Delayen, G. V. Eremeev, U. Pudasaini, C. E. Reece

Physics Faculty Publications

The twin axis cavity with two identical accelerating beams has been proposed for energy recovery linac (ERL) applications. Nb3Sn is a superconducting material with a higher critical temperature and a higher critical field as compared to Nb, which promises a lower operating cost due to higher quality factors. Two niobium twin axis cavities were fabricated at JLab and were proposed to be coated with Nb3Sn. Due to their more complex geometry, the typical coating process used for basic elliptical cavi-ties needs to be improved to coat these cavities. This development advances the current coating system at …


Beam Dynamics Study In A Dual Energy Storage Ring For Ion Beam Cooling*, B. Dhital, Y. S. Derbenev, D. Douglas, A. Hutton, Geoffrey A. Krafft, F. Lin, V. S. Morozov, Y. Zhang Jan 2021

Beam Dynamics Study In A Dual Energy Storage Ring For Ion Beam Cooling*, B. Dhital, Y. S. Derbenev, D. Douglas, A. Hutton, Geoffrey A. Krafft, F. Lin, V. S. Morozov, Y. Zhang

Physics Faculty Publications

A dual energy storage ring designed for beam cooling consists of two closed rings with significantly different energies: the cooling and damping rings. These two rings are connected by an energy recovering superconducting RF structure that provides the necessary energy difference. In our design, the RF acceleration has a main linac and harmonic cavities both running at crest that at first accelerates the beam from low energy E_{L} to high energy E_{H} and then decelerates the beam from E_{H} to E_{L} in the next pass. The purpose of the harmonic cavities is to extend the bunch length in a dual …


Estimates Of Damped Equilibrium Energy Spread And Emittance In A Dual Energy Storage Ring, B. Dhital, Y. S. Derbenev, D. Douglas, A. Hutton, G. A. Krafft, F. Lin, V.S. Morozov, Y. Zhang Jan 2021

Estimates Of Damped Equilibrium Energy Spread And Emittance In A Dual Energy Storage Ring, B. Dhital, Y. S. Derbenev, D. Douglas, A. Hutton, G. A. Krafft, F. Lin, V.S. Morozov, Y. Zhang

Physics Faculty Publications

A dual energy storage ring design consists of two loops at markedly different energies. As in a single-energy storage ring, the linear optics in the ring design may be used to determine the damped equilibrium emittance and energy spread. Because the individual radiation events in the two rings are different and independent, we can provide analytical estimates of the damping times in a dual energy storage ring. Using the damping times, the values of damped energy spread, and emittance can be determined for a range of parameters related to lattice design and rings energies. We present analytical calculations along with …


Energy-Dependent Π⁺Π⁺Π⁺ Scattering Amplitude From Qcd, Maxwell T. Hansen, Raúl A. Briceño, Robert G. Edwards, Christopher E. Thomas, David J. Wilson Jan 2021

Energy-Dependent Π⁺Π⁺Π⁺ Scattering Amplitude From Qcd, Maxwell T. Hansen, Raúl A. Briceño, Robert G. Edwards, Christopher E. Thomas, David J. Wilson

Physics Faculty Publications

Focusing on three-pion states with maximal isospin π⁺π⁺π⁺, we present the first nonperturbative determination of an energy-dependent three-hadron scattering amplitude from first-principles QCD. The calculation combines finite-volume three-hadron energies, extracted using numerical lattice QCD, with a relativistic finite-volume formalism, required to interpret the results. To fully implement the latter, we also solve integral equations that relate an intermediate three-body K matrix to the physical three-hadron scattering amplitude. The resulting amplitude shows rich analytic structure and a complicated dependence on the two-pion invariant masses, represented here via Dalitz-like plots of the scattering rate.


Gauge-Invariant Tmd Factorization For Drell-Yan Hadronic Tensor At Small X, Ian Balitsky Jan 2021

Gauge-Invariant Tmd Factorization For Drell-Yan Hadronic Tensor At Small X, Ian Balitsky

Physics Faculty Publications

The Drell-Yan hadronic tensor for electromagnetic (EM) current is calculated in the Sudakov region s ≫ Q2 ≫q2 with 1Q² accuracy, first at the tree level and then with the double-log accuracy. It is demonstrated that in the leading order in Nc the higher-twist quark-quark-gluon TMDs reduce to leading-twist TMDs due to QCD equation of motion. The resulting tensor for unpolarized hadrons is EM gauge-invariant and depends on two leading-twist TMDs: f1 responsible for total DY cross section, and Boer-Mulders function h1. The order-of-magnitude estimates of angular distributions for DY …


Question 1: Blooming Trees; Question 2: Human Energy, Larry Weinstein Jan 2021

Question 1: Blooming Trees; Question 2: Human Energy, Larry Weinstein

Physics Faculty Publications

How many trees began to bloom (flower) today in the U.S.? How much energy does a human use in his/her life-time? [Extracted from article]


Question 1: Flat Screens, Question 2: Volleyball Travel, Larry Weinstein Jan 2021

Question 1: Flat Screens, Question 2: Volleyball Travel, Larry Weinstein

Physics Faculty Publications

How much total space did we save by switching to flat screen TVs and monitors? How far does a volleyball travel during a typical volleyball game?


Intense Monochromatic Photons Above 100 Kev From An Inverse Compton Source, Kirsten Deitrick, Georg H. Hoffstaetter, Carl Franck, Bruno D. Muratori, Peter H. Williams, Geoffrey A, Krafft, Balša Terzić, Joe Crone, Hywel Owen Jan 2021

Intense Monochromatic Photons Above 100 Kev From An Inverse Compton Source, Kirsten Deitrick, Georg H. Hoffstaetter, Carl Franck, Bruno D. Muratori, Peter H. Williams, Geoffrey A, Krafft, Balša Terzić, Joe Crone, Hywel Owen

Physics Faculty Publications

Quasimonochromatic x rays are difficult to produce above 100 keV, but have a number of uses in x-ray and nuclear science, particularly in the analysis of transuranic species. Inverse Compton scattering (ICS) is capable of fulfilling this need, producing photon beams with properties and energies well beyond the limits of typical synchrotron radiation facilities. We present the design and predicted output of such an ICS source at CBETA, a multiturn energy-recovery linac with a top energy of 150 MeV, which we anticipate producing x rays with energies above 400 keV and a collimated flux greater than 108 photons per second …


Observation Of Beam Spin Asymmetries In The Process Ep → E'Π⁺Π⁻ X With Clas 12, T. B. Hayward, C. Dilks, A. Vossen, Dilini Bulumulla, Mohammad Hattawy, Florian Hauenstein, Mariana Khachatryan, Sebastian E. Kuhn, Yelena Prok, B. Yale, N. Zachariou, J. Zhang, Et Al., Clas Collaboration Jan 2021

Observation Of Beam Spin Asymmetries In The Process Ep → E'Π⁺Π⁻ X With Clas 12, T. B. Hayward, C. Dilks, A. Vossen, Dilini Bulumulla, Mohammad Hattawy, Florian Hauenstein, Mariana Khachatryan, Sebastian E. Kuhn, Yelena Prok, B. Yale, N. Zachariou, J. Zhang, Et Al., Clas Collaboration

Physics Faculty Publications

The observation of beam spin asymmetries in two-pion production in semi-inclusive deep inelastic scattering off an unpolarized proton target is reported. The data presented here were taken in the fall of 2018 with the CLAS12 spectrometer using a 10.6 GeV longitudinally spin-polarized electron beam delivered by CEBAF at JLab. The measured asymmetries provide the first opportunity to extract the parton distribution function e(x), which provides information about the interaction between gluons and quarks, in a collinear framework that offers cleaner access than previous measurements. The asymmetries also constitute the first ever signal sensitive to the helicity-dependent two-pion fragmentation function …


Measurement Of Deeply Virtual Compton Scattering Off 4He With The Cebaf Large Acceptance Spectrometer At Jefferson Lab, Clas Collaboration, R. Dupré, Mohammad Hattawy, N. A. Batzell, Stephen Bültmann, Bayram Torayev, Moskov Amaryan, Dilini L. Bulumulla, M. Mayer, David C. Payette, Yelena Prok, Jiwan Poudel, Lawrence B. Weinstein, B. Yale, N. Zachariou, J. Zhang, Et Al. Jan 2021

Measurement Of Deeply Virtual Compton Scattering Off 4He With The Cebaf Large Acceptance Spectrometer At Jefferson Lab, Clas Collaboration, R. Dupré, Mohammad Hattawy, N. A. Batzell, Stephen Bültmann, Bayram Torayev, Moskov Amaryan, Dilini L. Bulumulla, M. Mayer, David C. Payette, Yelena Prok, Jiwan Poudel, Lawrence B. Weinstein, B. Yale, N. Zachariou, J. Zhang, Et Al.

Physics Faculty Publications

We report on the measurement of the beam spin asymmetry in the deeply virtual Compton scattering off 4He using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab using a 6 GeV longitudinally polarized electron beam incident on a pressurized 4He gaseous target. We detail the method used to ensure the exclusivity of the measured reactions, in particular the upgrade of CLAS with a radial time projection chamber to detect the low-energy recoiling 4He nuclei and an inner calorimeter to extend the photon detection acceptance at forward angles. Our results confirm the theoretically predicted enhancement of the …


Drell-Yan Angular Lepton Distributions At Small X From Tmd Factorization, Ian Balitsky Jan 2021

Drell-Yan Angular Lepton Distributions At Small X From Tmd Factorization, Ian Balitsky

Physics Faculty Publications

The Drell-Yan process is studied in the framework of TMD factorization in the Sudakov region s » Q2 » q2 corresponding to recent LHC experiments with Q2 of order of mass of Z-boson and transverse momentum of DY pair ∼ few tens GeV. The DY hadronic tensors are expressed in terms of quark and quark-gluon TMDs with 1Q2 and 1Nc2 accuracy. It is demonstrated that in the leading order in Nc the higher-twist quark-quark-gluon TMDs reduce to leading-twist TMDs due to QCD equation of motion. The resulting hadronic tensors depend on …


One-Loop Structure Of Parton Distribution For The Gluon Condensate And "Zero Modes", Anatoly Radyushkin, Shuai Zhao Jan 2021

One-Loop Structure Of Parton Distribution For The Gluon Condensate And "Zero Modes", Anatoly Radyushkin, Shuai Zhao

Physics Faculty Publications

We present results for one-loop corrections to the recently introduced “gluon condensate” PDF F(x). In particular, we give expression for the gg-part of its evolution kernel. To enforce strict compliance with the gauge invariance requirements, we have used on-shell states for external gluons, and have obtained identical results both in Feynman and light-cone gauges. No “zero mode” δ(x) terms were found for the twist-4 gluon PDF F(x). However a q2δ(x) term was found for the ξ = 0 GPD F(x, q2) at nonzero momentum transfer q. Overall, our results do not agree with the original attempt …


Unpolarized Gluon Distribution In The Nucleon From Lattice Quantum Chromodynamics, Tanjib Khan, Raza Sabbir Sufian, Joseph Karpie, Christopher J. Monahan, Colin Egerer, Bálint Joó, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, David G. Richards, Eloy Romero, Savvas Zafeiropoulos, On Behalf Of The Hadstruc Collaboration Jan 2021

Unpolarized Gluon Distribution In The Nucleon From Lattice Quantum Chromodynamics, Tanjib Khan, Raza Sabbir Sufian, Joseph Karpie, Christopher J. Monahan, Colin Egerer, Bálint Joó, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, David G. Richards, Eloy Romero, Savvas Zafeiropoulos, On Behalf Of The Hadstruc Collaboration

Physics Faculty Publications

In this study, we present a determination of the unpolarized gluon Ioffe-time distribution in the nucleon from a first principles lattice quantum chromodynamics calculation. We carry out the lattice calculation on a 323 × 64 ensemble with a pion mass of 358 MeV and lattice spacing of 0.094 fm. We construct the nucleon interpolating fields using the distillation technique, flow the gauge fields using the gradient flow, and solve the summed generalized eigenvalue problem to determine the gluonic matrix elements. Combining these techniques allows us to provide a statistically well-controlled Ioffe-time distribution and unpolarized gluon parton distribution function. We …


¹² C(E,E'Pn) Measurements Of Short Range Correlations In The Tensor-To-Scalar Interaction Transition Region, I. Korover, J. R. Pybus, A. Schmidt, F. Hauenstein, M. Duer, L. B. Weinstein, M. J. Amaryan, D. Bullumulla, M. Hattawy, X. Zheng, Et Al., The Clas Collaboration Jan 2021

¹² C(E,E'Pn) Measurements Of Short Range Correlations In The Tensor-To-Scalar Interaction Transition Region, I. Korover, J. R. Pybus, A. Schmidt, F. Hauenstein, M. Duer, L. B. Weinstein, M. J. Amaryan, D. Bullumulla, M. Hattawy, X. Zheng, Et Al., The Clas Collaboration

Physics Faculty Publications

High-momentum configurations of nucleon pairs at short-distance are probed using measurements of the 12C(e,'p) and 12C (e,e'pN) reactions (where N is either n or p), at high Q2 and 𝒙B > 1.1. The data span a missing-momentum range of 300-1000 MeV/c and are predominantly sensitive to the transition region of the strong nuclear interaction from a tensor to scalar interaction. The data are well reproduced by theoretical calculations using the generalized contact formalism with both chiral and phenomenological nucleon-nucleon (NN) interaction models. This agreement suggests that the measured high missing-momentum protons up to 1000 MeV/c predominantly …


Experimental Tests Of Qcd Scaling Laws At Large Momentum Transfer In Exclusive Light-Meson Photoproduction, Moskov J. Amaryan, William J. Briscoe, Michael G. Ryskin, Igor I. Strakovsky Jan 2021

Experimental Tests Of Qcd Scaling Laws At Large Momentum Transfer In Exclusive Light-Meson Photoproduction, Moskov J. Amaryan, William J. Briscoe, Michael G. Ryskin, Igor I. Strakovsky

Physics Faculty Publications

We evaluated CLAS Collaboration measurements for the 90 meson photoproduction off the nucleon using a tagged photon beam spanning the energy interval s = 3–11 GeV2. The results are compared with the “quark counting rules” predictions.


First Demonstration Of The Use Of Crab Cavities On Hadron Beams, R. Calaga, A. Alekou, F. Antoniou, R. B. Appleby, L. Arnaudon, K. Artoos, G. Arduini, V. Baglin, S. Barriere, H. Bartosik, P. Baudrenghien, I. Ben-Zvi, T. Bohl, A. Boucherie, O. S. Brüning, K. Brondzinski, A. Butterworth, G. Burt, O. Capatina, S. Calvo, T. Capelli, M. Carlà, F. Carra, L. R. Carver, A. Castilla-Loeza, E. Daly, L. Dassa, J. Delayen, S. U. De Silva, A. Dexter, M. Garlasche, F. Gerigk, L. Giordanino, D. Glenat, M. Guinchard, A. Harrison, E. Jensen, C. Julie, T. Jones, F. Killing, A. Krawczyk, T. Levens, R. Leuxe, B. Lindstrom, Z. Li, A. Macewen, A. Macpherson, P. Menendez, T. Mikkola, P. Minginette, J. Mitchell, E. Montesinos, G. Papotti, H. Park, C. Pasquino, S. Pattalwar, E. C. Pleite, T. Powers, B. Prochal, A. Ratti, L. Rossi, V. Rude, M. Therasse, R. Tomás, N. Stapely, I. Santillana, N. Shipman, J. Simonin, M. Sosin, J. Swieszek, N. Templeton, G. Vandoni, S. Verdú-Andrés, M. Wartak, C. Welsch, D. Wollman, Q. Wu, B. Xiao, E. Yamakawa, C. Zanoni, F. Zimmermann, A. Zwozniak Jan 2021

First Demonstration Of The Use Of Crab Cavities On Hadron Beams, R. Calaga, A. Alekou, F. Antoniou, R. B. Appleby, L. Arnaudon, K. Artoos, G. Arduini, V. Baglin, S. Barriere, H. Bartosik, P. Baudrenghien, I. Ben-Zvi, T. Bohl, A. Boucherie, O. S. Brüning, K. Brondzinski, A. Butterworth, G. Burt, O. Capatina, S. Calvo, T. Capelli, M. Carlà, F. Carra, L. R. Carver, A. Castilla-Loeza, E. Daly, L. Dassa, J. Delayen, S. U. De Silva, A. Dexter, M. Garlasche, F. Gerigk, L. Giordanino, D. Glenat, M. Guinchard, A. Harrison, E. Jensen, C. Julie, T. Jones, F. Killing, A. Krawczyk, T. Levens, R. Leuxe, B. Lindstrom, Z. Li, A. Macewen, A. Macpherson, P. Menendez, T. Mikkola, P. Minginette, J. Mitchell, E. Montesinos, G. Papotti, H. Park, C. Pasquino, S. Pattalwar, E. C. Pleite, T. Powers, B. Prochal, A. Ratti, L. Rossi, V. Rude, M. Therasse, R. Tomás, N. Stapely, I. Santillana, N. Shipman, J. Simonin, M. Sosin, J. Swieszek, N. Templeton, G. Vandoni, S. Verdú-Andrés, M. Wartak, C. Welsch, D. Wollman, Q. Wu, B. Xiao, E. Yamakawa, C. Zanoni, F. Zimmermann, A. Zwozniak

Physics Faculty Publications

Many future particle colliders require beam crabbing to recover geometric luminosity loss from the nonzero crossing angle at the interaction point (IP). A first demonstration experiment of crabbing with hadron beams was successfully carried out with high energy protons. This breakthrough result is fundamental to achieve the physics goals of the high luminosity LHC (HL-LHC) and the future circular collider (FCC). The expected peak luminosity gain (related to collision rate) is 65% for HL-LHC and even greater for the FCC. Novel beam physics experiments with proton beams in CERN’s Super Proton Synchrotron (SPS) were performed to demonstrate several critical aspects …


Evidence Of Increased Radio-Frequency Losses In Cavities From The Fundamental Power Coupler Cold Window, Frank Marhauser, Gianluigi Ciovati Jan 2021

Evidence Of Increased Radio-Frequency Losses In Cavities From The Fundamental Power Coupler Cold Window, Frank Marhauser, Gianluigi Ciovati

Physics Faculty Publications

High radio-frequency (rf) losses measured for cavities in original Continuous Electron Beam Accelerator Facility (CEBAF) cryomodules, compared to the losses measured in single-cavity tests, have been a long-standing issue related to their performance. We summarize experimental evidence of increased rf losses in CEBAF cavities arising from the fundamental power coupler cold window and waveguide, respectively. Cryogenic rf tests were done on cavities tested in vertical cryostats as well as inside cryomodules in the accelerator tunnel. The cold window metallization losses were assessed by combining numerical results with measured data obtained with an existing cryogenic waveguide resonator setup. The results showed …


Photoproduction Of The F₂(1270) Meson Using The Clas Detector, Krishna P. Adhikari, Moskov J. Amaryan, Dilini Bulumulla, Mohammad Hattawy, G. Gavalian, Charles E. Hyde, Yelena Prok, J. Zhang, Et Al., Clas Collaboration Jan 2021

Photoproduction Of The F₂(1270) Meson Using The Clas Detector, Krishna P. Adhikari, Moskov J. Amaryan, Dilini Bulumulla, Mohammad Hattawy, G. Gavalian, Charles E. Hyde, Yelena Prok, J. Zhang, Et Al., Clas Collaboration

Physics Faculty Publications

The quark structure of the f2(1270) meson has, for many years, been assumed to be a pure quark-antiquark (qq⁻) resonance with quantum numbers JPC = 2++. Recently, it was proposed that the f2(1270) is a molecular state made from the attractive interaction of two 𝜌 mesons. Such a state would be expected to decay strongly to final states with charged pions due to the dominant decay 𝜌 → π+π-, whereas decay to two neutral pions would likely be suppressed. Here, we measure for the first time the reaction 𝛾p …


Beam Spin Asymmetry In Semi-Inclusive Electroproduction Of Hadron Pairs, M. J. Amaryan, M. Hattawy, S. E. Kuhn, Y. Prok, J. Zhang, Z. W. Zhao, Et Al., Clas Collaboration Jan 2021

Beam Spin Asymmetry In Semi-Inclusive Electroproduction Of Hadron Pairs, M. J. Amaryan, M. Hattawy, S. E. Kuhn, Y. Prok, J. Zhang, Z. W. Zhao, Et Al., Clas Collaboration

Physics Faculty Publications

A first measurement of the longitudinal beam spin asymmetry ALU in the semi-inclusive electroproduction of pairs of charged pions is reported. ALU is a higher-twist observable and offers the cleanest access to the nucleon twist-3 parton distribution function e(x). Data have been collected in the Hall-B at Jefferson Lab by impinging a 5.498-GeV electron beam on a liquid-hydrogen target, and reconstructing the scattered electron and the pion pair with the CLAS detector. One-dimensional projections of the AsinLUϕR moments are extracted for the kinematic variables of interest in the valence quark region. The …


Ruling Out Color Transparency In Quasielastic ¹²C(E,E'P) Up To Q² Of 14.2 (Gev/C)², D. Bhetuwal, J. Matter, H. Szumila-Vance, F. Hauenstein, C. Yero, J. Zhang, Et Al., Hall C. Collaboration Jan 2021

Ruling Out Color Transparency In Quasielastic ¹²C(E,E'P) Up To Q² Of 14.2 (Gev/C)², D. Bhetuwal, J. Matter, H. Szumila-Vance, F. Hauenstein, C. Yero, J. Zhang, Et Al., Hall C. Collaboration

Physics Faculty Publications

Quasielastic 12C(e,e'p) scattering was measured at spacelike 4-momentum transfer squared Q2 = 8, 9.4, 11.4, and 14.2 (GeV/c)2, the highest ever achieved to date. Nuclear transparency for this reaction was extracted by comparing the measured yield to that expected from a plane-wave impulse approximation calculation without any final state interactions. The measured transparency was consistent with no Q2 dependence, up to proton momenta of 8.5 GeV/c, ruling out the quantum chromodynamics effect of color transparency at the measured Q2 scales in exclusive (e, e'p) reactions. These results impose strict constraints on models of color …


Development And Characterization Of Nb₃N/Al₂0₃ Superconducting Multilayers For Particle Accelerators, Chris Sundahl, Junki Makita, Paul B. Welander, Yi-Feng Su, Fumitake Kametani, Lin Xie, Huimin Zhang, Lian Li, Alex Gurevich, Chang-Beom Eom Jan 2021

Development And Characterization Of Nb₃N/Al₂0₃ Superconducting Multilayers For Particle Accelerators, Chris Sundahl, Junki Makita, Paul B. Welander, Yi-Feng Su, Fumitake Kametani, Lin Xie, Huimin Zhang, Lian Li, Alex Gurevich, Chang-Beom Eom

Physics Faculty Publications

Superconducting radio-frequency (SRF) resonator cavities provide extremely high quality factors > 1010 at 1-2 GHz and 2 K in large linear accelerators of high-energy particles. The maximum accelerating field of SRF cavities is limited by penetration of vortices into the superconductor. Present state-of-the-art Nb cavities can withstand up to 50 MV/m accelerating gradients and magnetic fields of 200-240 mT which destroy the low-dissipative Meissner state. Achieving higher accelerating gradients requires superconductors with higher thermodynamic critical fields, of which Nb3Sn has emerged as a leading material for the next generation accelerators. To overcome the problem of low vortex penetration …


Measurements Of Dihadron Correlations Relative To The Event Plane In Au Plus Au Collisions At √Snn= 200 Gev, H. Agakishiev, M. M. Aggarwal, Z. Ahammed, S. Bueltmann, I. Koralt, D. Plyku, Et Al., Star Collaboration Jan 2021

Measurements Of Dihadron Correlations Relative To The Event Plane In Au Plus Au Collisions At √Snn= 200 Gev, H. Agakishiev, M. M. Aggarwal, Z. Ahammed, S. Bueltmann, I. Koralt, D. Plyku, Et Al., Star Collaboration

Physics Faculty Publications

Dihadron azimuthal correlations containing a high transverse momentum (pT) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to p+p and d+Au collisions. The modification increases with the collision centrality, suggesting a path-length or energy density dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20%-60%) Au+Au collisions at √sNN = 200 GeV as a function …