Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

Physics Faculty Research & Creative Works

2000

Quantum theory

Articles 1 - 2 of 2

Full-Text Articles in Physics

Transport Anomalies And Marginal Fermi-Liquid Effects At A Quantum Critical Point, Dietrich Belitz, Theodore R. Kirkpatrick, Rajesh S. Narayanan, Thomas Vojta Nov 2000

Transport Anomalies And Marginal Fermi-Liquid Effects At A Quantum Critical Point, Dietrich Belitz, Theodore R. Kirkpatrick, Rajesh S. Narayanan, Thomas Vojta

Physics Faculty Research & Creative Works

The conductivity and the tunneling density of states of disordered itinerant electrons in the vicinity of a ferromagnetic transition at low temperature are discussed. Critical fluctuations lead to nonanalytic frequency and temperature dependencies that are distinct from the usual long-time tail effects in a disordered Fermi liquid. The crossover between these two types of behavior is proposed as an experimental check of recent theories of the quantum ferromagnetic critical behavior. In addition, the quasiparticle properties at criticality are shown to be those of a marginal Fermi liquid.


Direct Measurement Of Oscillations Between Degenerate Two-Electron Bound-State Configurations In A Rapidly Autoionizing System, Heider N. Ereifej, J. Greg Story Jul 2000

Direct Measurement Of Oscillations Between Degenerate Two-Electron Bound-State Configurations In A Rapidly Autoionizing System, Heider N. Ereifej, J. Greg Story

Physics Faculty Research & Creative Works

In this paper we report a direct observation of the oscillation between bound-state configurations in a rapidly autoionizing system. Calcium atoms were excited to a pure 4p3/2nd two-electron configuration using a 500-fsec laser pulse. The initial 4p3/2nd doubly excited state is energy degenerate with the 4p1/2n'd states and several continuum channels. Because of the short-pulse excitation, the initial state of the atom is not an energy eigenstate, but a nonstationary wave packet. As a result, oscillations between the two bound configurations were produced. These oscillations were measured by scanning the timing of a second …