Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Physics

Ice Nucleation At The Contact Line Triggered By Transient Electrowetting Fields, Fan Yang, Raymond Shaw, Colin Gurganus, Su Kong Chong, Yoke Khin Yap Dec 2015

Ice Nucleation At The Contact Line Triggered By Transient Electrowetting Fields, Fan Yang, Raymond Shaw, Colin Gurganus, Su Kong Chong, Yoke Khin Yap

Department of Physics Publications

Supercooled water is found to have a significantly enhanced freezing temperature during transient electrowetting with electric fields of order 1 V/μm. High speed imaging reveals that the nucleation occurs randomly at the three-phase contact line (droplet perimeter) and can occur at multiple points during one freezing event. Possible nucleation mechanisms are explored by testing various substrate geometries and materials. Results demonstrate that electric field alone has no detectable effect on ice nucleation, but the moving boundary of the droplet on the substrate due to electrowetting is associated with the triggering of nucleation at a much higher temperature.


Observations Of New Particle Formation In Enhanced Uv Irradiance Zones Near Cumulus Clouds, B. Wehner, F. Werner, F. Ditas, R. A. Shaw, M. Kulmala, H. Siebert Oct 2015

Observations Of New Particle Formation In Enhanced Uv Irradiance Zones Near Cumulus Clouds, B. Wehner, F. Werner, F. Ditas, R. A. Shaw, M. Kulmala, H. Siebert

Michigan Tech Publications

During the CARRIBA (Cloud, Aerosol, Radiation and tuRbulence in the trade wInd regime over Barbados) campaign, the interaction between aerosol particles and cloud microphysical properties was investigated in detail, which also includes the influence of clouds on the aerosol formation. During two intensive campaigns in 2010 and 2011, helicopter-borne measurement flights were performed to investigate the thermodynamic, turbulent, microphysical, and radiative properties of trade-wind cumuli over Barbados. During these flights, 91 cases with increased aerosol particle number concentrations near clouds were detected. The majority of these cases are also correlated with enhanced irradiance in the ultraviolet (UV) spectral wavelength range. …


Schneefernerhaus As A Mountain Research Station For Clouds And Turbulence, S. Risius, H. Xu, F. Di Lorenzo, H. Xi, H. Siebert, R. A. Shaw, E. Bodenschatz Aug 2015

Schneefernerhaus As A Mountain Research Station For Clouds And Turbulence, S. Risius, H. Xu, F. Di Lorenzo, H. Xi, H. Siebert, R. A. Shaw, E. Bodenschatz

Michigan Tech Publications

Cloud measurements are usually carried out with airborne campaigns, which are expensive and are limited by temporal duration and weather conditions. Ground-based measurements at high-altitude research stations therefore play a complementary role in cloud study. Using the meteorological data (wind speed, direction, temperature, humidity, visibility, etc.) collected by the German Weather Service (DWD) from 2000 to 2012 and turbulence measurements recorded by multiple ultrasonic sensors (sampled at 10 Hz) in 2010, we show that the Umweltforschungsstation Schneefernerhaus (UFS) located just below the peak of Zugspitze in the German Alps, at a height of 2650 m, is a well-suited station for …


High-Resolution Measurement Of Cloud Microphysics And Turbulence At A Mountaintop Station, H. Siebert, R. A. Shaw, J. Ditas, T. Schmeissner, S. P. Malinowski, E. Bodenschatz, H. Xu Aug 2015

High-Resolution Measurement Of Cloud Microphysics And Turbulence At A Mountaintop Station, H. Siebert, R. A. Shaw, J. Ditas, T. Schmeissner, S. P. Malinowski, E. Bodenschatz, H. Xu

Michigan Tech Publications

Mountain research stations are advantageous not only for long-term sampling of cloud properties but also for measurements that are prohibitively difficult to perform on airborne platforms due to the large true air speed or adverse factors such as weight and complexity of the equipment necessary. Some cloud-turbulence measurements, especially Lagrangian in nature, fall into this category. We report results from simultaneous, high-resolution and collocated measurements of cloud microphysical and turbulence properties during several warm cloud events at the Umweltforschungsstation Schneefernerhaus (UFS) on Zugspitze in the German Alps. The data gathered were found to be representative of observations made with similar …


Switching Behaviors Of Graphene-Boron Nitride Nanotube Heterojunctions, Vyom Parashar, Corentin Durand, Boyi Hao, Rodrigo Amorim, Ravindra Pandey, Bishnu Tiwari, Dongyan Zhang, Yang Liu, An-Ping Li, Yoke Khin Yap Jul 2015

Switching Behaviors Of Graphene-Boron Nitride Nanotube Heterojunctions, Vyom Parashar, Corentin Durand, Boyi Hao, Rodrigo Amorim, Ravindra Pandey, Bishnu Tiwari, Dongyan Zhang, Yang Liu, An-Ping Li, Yoke Khin Yap

Department of Physics Publications

High electron mobility of graphene has enabled their application in high-frequency analogue devices but their gapless nature has hindered their use in digital switches. In contrast, the structural analogous, h-BN sheets and BN nanotubes (BNNTs) are wide band gap insulators. Here we show that the growth of electrically insulating BNNTs on graphene can enable the use of graphene as effective digital switches. These graphene-BNNT heterojunctions were characterized at room temperature by four-probe scanning tunneling microscopy (4-probe STM) under real-time monitoring of scanning electron microscopy (SEM). A switching ratio as high as 105 at a turn-on voltage as low …


Perturbations Of The Optical Properties Of Mineral Dust Particles By Mixing With Black Carbon: A Numerical Simulation Study, B. V. Scarnato, S. China, K. Nielsen, C. Mazzoleni Jun 2015

Perturbations Of The Optical Properties Of Mineral Dust Particles By Mixing With Black Carbon: A Numerical Simulation Study, B. V. Scarnato, S. China, K. Nielsen, C. Mazzoleni

Michigan Tech Publications

Field observations show that individual aerosol particles are a complex mixture of a wide variety of species, reflecting different sources and physico-chemical transformations. The impacts of individual aerosol morphology and mixing characteristics on the Earth system are not yet fully understood. Here we present a sensitivity study on climate-relevant aerosols optical properties to various approximations. Based on aerosol samples collected in various geographical locations, we have observationally constrained size, morphology and mixing, and accordingly simulated, using the discrete dipole approximation model (DDSCAT), optical properties of three aerosols types: (1) bare black carbon (BC) aggregates, (2) bare mineral dust, and (3) …


Ice Nucleation By Water-Soluble Macromolecules, B. G. Pummer, C. Budke, S. Augustin-Bauditz, D. Niedermeier, L. Felgitsch, C. J. Kampf, R. G. Huber, K. R. Liedl, T. Loerting, T. Moschen, M. Schauperl, M. Tollinger, C. E. Morris, H. Wex, H. Grothe, U. Pöschl, T. Koop, J. Fröhlich-Nowoisky Apr 2015

Ice Nucleation By Water-Soluble Macromolecules, B. G. Pummer, C. Budke, S. Augustin-Bauditz, D. Niedermeier, L. Felgitsch, C. J. Kampf, R. G. Huber, K. R. Liedl, T. Loerting, T. Moschen, M. Schauperl, M. Tollinger, C. E. Morris, H. Wex, H. Grothe, U. Pöschl, T. Koop, J. Fröhlich-Nowoisky

Michigan Tech Publications

Cloud glaciation is critically important for the global radiation budget (albedo) and for initiation of precipitation. But the freezing of pure water droplets requires cooling to temperatures as low as 235 K. Freezing at higher temperatures requires the presence of an ice nucleator, which serves as a template for arranging water molecules in an ice-like manner. It is often assumed that these ice nucleators have to be insoluble particles. We point out that also free macromolecules which are dissolved in water can efficiently induce ice nucleation: the size of such ice nucleating macromolecules (INMs) is in the range of nanometers, …


Sensing Based On Fano-Type Resonance Response Of All-Dielectric Metamaterials, Elena Semouchkina, Ran Duan, George Semouchkin, Ravindra Pandey Apr 2015

Sensing Based On Fano-Type Resonance Response Of All-Dielectric Metamaterials, Elena Semouchkina, Ran Duan, George Semouchkin, Ravindra Pandey

Michigan Tech Publications

A new sensing approach utilizing Mie resonances in metamaterial arrays composed of dielectric resonators is proposed. These arrays were found to exhibit specific, extremely high-Q factor (up to 15,000) resonances at frequencies corresponding to the lower edge of the array second transmission band. The observed resonances possessed with features typical for Fano resonances (FRs), which were initially revealed in atomic processes and recently detected in macro-structures, where they resulted from interference between local resonances and a continuum of background waves. Our studies demonstrate that frequencies and strength of Fano-type resonances in all-dielectric arrays are defined by interaction between local Mie …


Disdrometer Network Observations Of Finescale Spatial–Temporal Clustering In Rain, A. R. Jameson, M. L. Larsen, A. Kostinski Mar 2015

Disdrometer Network Observations Of Finescale Spatial–Temporal Clustering In Rain, A. R. Jameson, M. L. Larsen, A. Kostinski

Department of Physics Publications

The spatial clustering of drops is a defining characteristic of rain on all scales from centimeters to kilometers. It is the physical basis for much of the observed variability in rain. The authors report here on the temporal–spatial 1-min counts using a network of 21 optical disdrometers over a small area near Charleston, South Carolina. These observations reveal significant differences between spatial and temporal structures (i.e., clustering) for different sizes of drops, which suggest that temporal observations of clustering cannot be used to infer spatial clustering simply using by an advection velocity as has been done in past studies. It …


On The Variability Of Drop Size Distributions Over Areas, A. R. Jameson, M. L. Larsen, A. B. Kostinski Mar 2015

On The Variability Of Drop Size Distributions Over Areas, A. R. Jameson, M. L. Larsen, A. B. Kostinski

Department of Physics Publications

Past studies of the variability of drop size distributions (DSDs) have used moments of the distribution such as the mass-weighted mean drop size as proxies for the entire size distribution. In this study, however, the authors separate the total number of drops Nt from the DSD leaving the probability size distributions (PSDs); that is, DSD = Nt × PSD. The variability of the PSDs are then considered using the frequencies of size [P(D)] values at each different drop diameter P(PD | D) over an ensemble of observations collected using a …


Recent Advancement On The Optical Properties Of Two-Dimensional Molybdenum Disulfide (Mos2) Thin Films, Mingxiao Ye, Dustin Winslow, Dongyan Zhang, Ravindra Pandey, Yoke Khin Yap Mar 2015

Recent Advancement On The Optical Properties Of Two-Dimensional Molybdenum Disulfide (Mos2) Thin Films, Mingxiao Ye, Dustin Winslow, Dongyan Zhang, Ravindra Pandey, Yoke Khin Yap

Department of Physics Publications

The emergence of two-dimensional (2D) materials has led to tremendous interest in the study of graphene and a series of mono- and few-layered transition metal dichalcogenides (TMDCs). Among these TMDCs, the study of molybdenum disulfide (MoS2) has gained increasing attention due to its promising optical, electronic, and optoelectronic properties. Of particular interest is the indirect to direct band-gap transition from bulk and few-layered structures to mono-layered MoS2, respectively. In this review, the study of these properties is summarized. The use of Raman and Photoluminescence (PL) spectroscopy of MoS2 has become a reliable technique for differentiating …


A Comprehensive Laboratory Study On The Immersion Freezing Behavior Of Illite Nx Particles: A Comparison Of 17 Ice Nucleation Measurement Techniques, N. Hiranuma, S. Augustin-Bauditz, H. Bingemer, C. Budke, J. Curtius, A. Danielczok, K. Diehl, K. Dreischmeier, M. Ebert, F. Frank, N. Hoffmann, K. Kandler, A. Kiselev, T. Koop, T. Leisner, O. Möhler, B. Nillius, A. Peckhaus, D. Rose, S. Weinbruch, H. Wex, Y. Boose, P. J. Demott, J. D. Hader, T. C.J. Hill, Z. A. Kanji, G. Kulkarni, E. J.T. Levin, C. S. Mccluskey, M. Murakami, B. J. Murray, D. Niedermeier Mar 2015

A Comprehensive Laboratory Study On The Immersion Freezing Behavior Of Illite Nx Particles: A Comparison Of 17 Ice Nucleation Measurement Techniques, N. Hiranuma, S. Augustin-Bauditz, H. Bingemer, C. Budke, J. Curtius, A. Danielczok, K. Diehl, K. Dreischmeier, M. Ebert, F. Frank, N. Hoffmann, K. Kandler, A. Kiselev, T. Koop, T. Leisner, O. Möhler, B. Nillius, A. Peckhaus, D. Rose, S. Weinbruch, H. Wex, Y. Boose, P. J. Demott, J. D. Hader, T. C.J. Hill, Z. A. Kanji, G. Kulkarni, E. J.T. Levin, C. S. Mccluskey, M. Murakami, B. J. Murray, D. Niedermeier

Michigan Tech Publications

Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically relevant ice-nucleating particles. However, an intercomparison of these laboratory results is a difficult task because investigators have used different ice nucleation (IN) measurement methods to produce these results. A remaining challenge is to explore the sensitivity and accuracy of these techniques and to understand how the IN results are potentially influenced or biased by experimental parameters associated with these techniques. …


Intercomparing Different Devices For The Investigation Of Ice Nucleating Particles Using Snomax® As Test Substance, H. Wex, S. Augustin-Bauditz, Y. Boose, C. Budke, J. Curtius, K. Diehl, A. Dreyer, F. Frank, S. Hartmann, N. Hiranuma, E. Jantsch, Z. A. Kanji, A. Kiselev, T. Koop, O. Möhler, D. Niedermeier, B. Nillius, M. Rösch, D. Rose, C. Schmidt, I. Steinke, F. Stratmann Feb 2015

Intercomparing Different Devices For The Investigation Of Ice Nucleating Particles Using Snomax® As Test Substance, H. Wex, S. Augustin-Bauditz, Y. Boose, C. Budke, J. Curtius, K. Diehl, A. Dreyer, F. Frank, S. Hartmann, N. Hiranuma, E. Jantsch, Z. A. Kanji, A. Kiselev, T. Koop, O. Möhler, D. Niedermeier, B. Nillius, M. Rösch, D. Rose, C. Schmidt, I. Steinke, F. Stratmann

Michigan Tech Publications

Seven different instruments and measurement methods were used to examine the immersion freezing of bacterial ice nuclei from Snomax® (hereafter Snomax), a product containing ice-active protein complexes from non-viable Pseudomonas syringae bacteria. The experimental conditions were kept as similar as possible for the different measurements. Of the participating instruments, some examined droplets which had been made from suspensions directly, and the others examined droplets activated on previously generated Snomax particles, with particle diameters of mostly a few hundred nanometers and up to a few micrometers in some cases. Data were obtained in the temperature range from -2 to -38 °C, …


Evaluation Of Magnesium As A Hall Thruster Propellant, Mark A. Hopkins Jan 2015

Evaluation Of Magnesium As A Hall Thruster Propellant, Mark A. Hopkins

Dissertations, Master's Theses and Master's Reports - Open

In this study, the use of magnesium as a Hall thruster propellant was evaluated. A xenon Hall thruster was modified such that magnesium propellant could be loaded into the anode and use waste heat from the thruster discharge to drive the propellant vaporization. A control scheme was developed, which allowed for precise control of the mass flow rate while still using plasma heating as the main mechanism for evaporation. The thruster anode, which also served as the propellant reservoir, was designed such that the open area was too low for sufficient vapor flow at normal operating temperatures (i.e. plasma heating …


Barium Concentrations In Rock Salt By Laser Induced Breakdown Spectroscopy, Kiley J. Spirito Jan 2015

Barium Concentrations In Rock Salt By Laser Induced Breakdown Spectroscopy, Kiley J. Spirito

Dissertations, Master's Theses and Master's Reports - Open

Time-REsolved Laser Induced Breakdown Spectroscopy (TRELIBS) was used to determine the elemental concentration of barium in Texas Dome rock salt. TRELIBS allows for an efficient and in situ concentration analysis technique that detects a wide range of elements with no sample preparation.

TRELIBS measurements were made in the 545nm to 594nm wavelength range. The proximity of a strong barium emission line (553.5481 nm) to the sodium doublet (588.9950 nm and 589.5924 nm) allowed for measurement within a single frame of the spectrograph.

This barium emission line was compared to the sodium doublet for relative intensity. A homemade calibration sample containing …


Multiscale Examination And Modeling Of Electron Transport In Nanoscale Materials And Devices, Douglas R. Banyai Jan 2015

Multiscale Examination And Modeling Of Electron Transport In Nanoscale Materials And Devices, Douglas R. Banyai

Dissertations, Master's Theses and Master's Reports - Open

For half a century the integrated circuits (ICs) that make up the heart of electronic devices have been steadily improving by shrinking at an exponential rate. However, as the current crop of ICs get smaller and the insulating layers involved become thinner, electrons leak through due to quantum mechanical tunneling. This is one of several issues which will bring an end to this incredible streak of exponential improvement of this type of transistor device, after which future improvements will have to come from employing fundamentally different transistor architecture rather than fine tuning and miniaturizing the metal-oxide-semiconductor field effect transistors (MOSFETs) …


Understanding Electronic Structure And Transport Properties In Nanoscale Junctions, Kamal B. Dhungana Jan 2015

Understanding Electronic Structure And Transport Properties In Nanoscale Junctions, Kamal B. Dhungana

Dissertations, Master's Theses and Master's Reports - Open

Understanding the electronic structure and the transport properties of nanoscale materials are pivotal for designing future nano-scale electronic devices. Nanoscale materials could be individual or groups of molecules, nanotubes, semiconducting quantum dots, and biomolecules. Among these several alternatives, organic molecules are very promising and the field of molecular electronics has progressed significantly over the past few decades. Despite these progresses, it has not yet been possible to achieve atomic level control at the metal-molecule interface during a conductance measurement, which hinders the progress in this field. The lack of atomic level information of the interface also makes it much harder …


Study Of Non-Reciprocal Dichroism In Photonic Structures, Anindya Majumdar Jan 2015

Study Of Non-Reciprocal Dichroism In Photonic Structures, Anindya Majumdar

Dissertations, Master's Theses and Master's Reports - Open

Non-reciprocal phenomena are widely used in photonic devices. Important applications such as isolators and circulator waveguide structures depend on non-reciprocal effects. The basis of these phenomena is a difference in phase or refractive index for an electromagnetic wave of a given polarization as it travels through a medium in opposite directions. Generally this applies to the real part of the refractive index. The present report addresses a less studied phenomenon in non-reciprocal propagation, namely differences in optical absorption loss for a given polarization state in opposite propagation directions, a phenomenon we have termed non-reciprocal dichroism. Nonreciprocal dichroism can be defined …


Multi-Mode And Single Mode Polymer Waveguides And Structures For Short-Haul Optical Interconnects, Kevin L. Kruse Jan 2015

Multi-Mode And Single Mode Polymer Waveguides And Structures For Short-Haul Optical Interconnects, Kevin L. Kruse

Dissertations, Master's Theses and Master's Reports - Open

Single mode and multi-mode polymer optical waveguides are a viable solution for replacing copper interconnects as high speed and large bandwidth short-haul optical interconnects in next-generation supercomputers and data servers. A precision laser direct writing method is implemented for producing various single mode and multi-mode polymer waveguide structures and their performance is evaluated experimentally showing agreement with theoretically developed models. The laser direct writing method is the optimal solution for low-rate cost-effective prototyping and large area panel production.

A single mode polymer waveguide bridge module for silicon to glass optical fibers is designed, modeled, fabricated, and measured. The bridge module …


Modeling And Simulation Of Microstructures, Mechanisms, And Diffraction Effects In Energy Materials: Ferroelectrics And Lithium Ion Battery Cathode Materials, Jie Zhou Jan 2015

Modeling And Simulation Of Microstructures, Mechanisms, And Diffraction Effects In Energy Materials: Ferroelectrics And Lithium Ion Battery Cathode Materials, Jie Zhou

Dissertations, Master's Theses and Master's Reports - Open

Ferroelectric materials, as a large family exploited for the application of sensors, transducers and random access memories, open up a remarkable ground both for fundamental science and industry. Dielectric and piezoelectric properties are of the most interest in ferroelectric materials, which motivate research to enhance ferroelectric properties based on various application purposes. Among the multitudinous candidates in ferroelectric family, pseudo binary solid solutions with ABO3 lattice structure attract special attention in virtue of their large strain response when applying external loading. Furthermore, existence of morphological phase boundary (MPB) on their phase diagrams shed light on tuning material compositions to …


Geometry Induced Magneto-Optic Effects In Lpe Grown Magnetic Garnet Films, Ashim Chakravarty Jan 2015

Geometry Induced Magneto-Optic Effects In Lpe Grown Magnetic Garnet Films, Ashim Chakravarty

Dissertations, Master's Theses and Master's Reports - Open

This dissertation addresses dimensionality-induced magneto-optic effects in liquid-phaseepitaxy magnetic garnet thin films. It is found that the Faraday rotation (FR) per unit length evinces a marked and steady enhancement as the film thickness is reduced below ~100 nm in Bi0.8Gd0.2Lu2Fe5O12, although it remains constant in the micron- and most of the submicron- regime. The reported specific FR change in such reduced dimensions is due to sizedependent modifications in diamagnetic transition processes in the garnet film. These processes correspond to the electronic transitions from the singlet 6S ground state to …


Structures, Properties And Functionalities Of Magnetic Domain Walls In Thin Films, Nanowires And Atomic Chains: Micromagnetic And Ab Initio Studies, Liwei D. Geng Jan 2015

Structures, Properties And Functionalities Of Magnetic Domain Walls In Thin Films, Nanowires And Atomic Chains: Micromagnetic And Ab Initio Studies, Liwei D. Geng

Dissertations, Master's Theses and Master's Reports - Open

Structures, properties and functionalities of magnetic domain walls in thin film, nanowires and atomic chains are studied by micromagnetic simulations and ab initio calculations in this dissertation. For magnetic domain walls in thin films, we computationally investigated the dynamics of one-dimensional domain wall line in ultrathin ferromagnetic film, and the exponent α = 1.24 ± 0.05 is obtained in the creep regime near depinning force, indicating the washboard potential model is supported by our simulations. Furthermore, the roughness, creep, depinning and flow of domain wall line with commonly existed substructures driven by magnetic field are also studied. Our simulation results …


A Method For Determining The Mass Composition Of Ultra-High Energy Cosmic Rays By Predicting The Depth Of First Interaction Of Individual Extensive Air Showers, Tolga Yapici Jan 2015

A Method For Determining The Mass Composition Of Ultra-High Energy Cosmic Rays By Predicting The Depth Of First Interaction Of Individual Extensive Air Showers, Tolga Yapici

Dissertations, Master's Theses and Master's Reports - Open

Particle accelerators have been used to characterize the properties of particle and subatomic particles. The most advanced particle accelerators built, LHC, can run at 1017 eV. It is not possible with current technology to accelerate particle to the energies that can be detected by cosmic ray observatories.

In the past, by the direct measurements of cosmic rays, scientists discovered sub-atomic particles. Being accelerated to energies higher than 1018 eV, cosmic rays carry important information for particle physics. We have developed a method, which is a combination of Artificial Neural Networks and simple algebraic method that uses parameters from the extensive …


Search For Tev Gamma-Ray Sources In The Galactic Plane With The Hawc Observatory, Hao Zhou Jan 2015

Search For Tev Gamma-Ray Sources In The Galactic Plane With The Hawc Observatory, Hao Zhou

Dissertations, Master's Theses and Master's Reports

Cosmic rays, with an energy density of $\sim1\,\text{eV}\,\text{cm}^{-3}$, play an important role in the evolution of our Galaxy. Very high energy (TeV) gamma rays provide unique information about the acceleration sites of Galactic cosmic rays. The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory is an all-sky surveying instrument sensitive to gamma rays from 100\:GeV to 100\:TeV with a 2\,steradian instantaneous field of view and a duty cycle of $>95\%$. The array is located in Sierra Negra, Mexico at an elevation of 4,100\,m and was inaugurated in March 2015. Thanks to its modular design, science operation began in Summer 2013 …


Relativistic Configuration Interaction Calculations Of The Atomic Properties Of Selected Transition Metal Positive Ions; Ni Ii, V Ii And W Ii, Marwa Hefny Abdalmoneam Jan 2015

Relativistic Configuration Interaction Calculations Of The Atomic Properties Of Selected Transition Metal Positive Ions; Ni Ii, V Ii And W Ii, Marwa Hefny Abdalmoneam

Dissertations, Master's Theses and Master's Reports

Relativistic Configuration Interaction (RCI) method has been used to investigate atomic properties of the singly ionized transition metals including Nickel (Ni II), Vanadium (V II), and Tungsten (W II). The methodology of RCI computations was also improved. Specifically, the method to shift the energy diagonal matrix of the reference configurations was modified which facilitated including the effects of many electronic configurations that used to be difficult to be included in the energy matrix and speeded-up the final calculations of the bound and continuum energy spectrum. RCI results were obtained for three different cases:

  1. Atomic moments and polarizabilities of Ni II; …