Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Physics

Surface Reconstruction In Iron Garnets, Sushree Dash Jan 2023

Surface Reconstruction In Iron Garnets, Sushree Dash

Dissertations, Master's Theses and Master's Reports

This dissertation presents the results of a study investigating the physical mechanisms underlying an unexpectedly large increase in magneto-optic efficiency observed in iron garnet. Such materials are technologically important for telecommunications due to their nonreciprocal optical action. In the past, our group had found evidence of an enhanced Faraday rotation in bismuth-substituted iron garnet films less than 50 nm thick. Subsequent investigation revealed that this enhancement could be traced to surface effects. This is significant because understanding these phenomena could be used to formulate engineering solutions for device miniaturization. In this dissertation, we present the result of a research project …


Theoretical Investigation On Optical Properties Of 2d Materials And Mechanical Properties Of Polymer Composites At Molecular Level, Geeta Sachdeva Jan 2022

Theoretical Investigation On Optical Properties Of 2d Materials And Mechanical Properties Of Polymer Composites At Molecular Level, Geeta Sachdeva

Dissertations, Master's Theses and Master's Reports

The field of two-dimensional (2D) layered materials provides a new platform for studying diverse physical phenomena that are scientifically interesting and relevant for technological applications. Theoretical predictions from atomically resolved computational simulations of 2D materials play a pivotal role in designing and advancing these developments. The focus of this thesis is 2D materials especially graphene and BN studied using density functional theory (DFT) and molecular dynamics (MD) simulations. In the first half of the thesis, the electronic structure and optical properties are discussed for graphene, antimonene, and borophene. It is found that the absorbance in (atomically flat) multilayer antimonene (group …


Investigating Ice Nucleation At Negative Pressures Using Molecular Dynamics: A First Order Approximation Of The Dependence Of Ice Nucleation Rate On Pressure, Elise Rosky Jan 2021

Investigating Ice Nucleation At Negative Pressures Using Molecular Dynamics: A First Order Approximation Of The Dependence Of Ice Nucleation Rate On Pressure, Elise Rosky

Dissertations, Master's Theses and Master's Reports

Atmospheric scientists and climate modelers are faced with uncertainty around the process of ice production in clouds. While significant progress has been made in predicting homogeneous and heterogeneous ice nucleation rates as a function of temperature, recent experiments have shown that ice nucleation rates can be enhanced without decreasing temperature, through various mechanical agitations. One hypothesis for these findings is that mechanisms of stretching water and thereby inducing negative pressure in the liquid could lead to an increase in freezing rate. To better understand the viability of this concept, the effect of negative pressure on ice nucleation rates needs to …


Magnetism In Γ-Fesi2 Nanostructures: A First Principles Study, Sahil Dhoka Jan 2020

Magnetism In Γ-Fesi2 Nanostructures: A First Principles Study, Sahil Dhoka

Dissertations, Master's Theses and Master's Reports

First-principles calculations are performed on γ-FeSi2 nanostructures grown on Si (111) and (001) substrate. An attempt to explain the origin of emergent magnetic properties of the metastable gamma phase of iron di-silicide (γ-FeSi2) is made, which show ferromagnetic behavior on nanoscale, unlike its possible bulk form. Many papers try to explain this magnetism from factors like bulk, epitaxial strain, interface, surface, edges, and corners but doesn’t provide an analytical study for these explanations. Density functional theory is used to analyze the magnetic effects of these factors. The results for the epitaxial structures show no magnetic behavior for …


Energy Transfer Between Eu2+ And Mn2+ For Na(Sr,Ba)Po4 And Ba2mg(Bo3)2, Kevin Bertschinger Jan 2019

Energy Transfer Between Eu2+ And Mn2+ For Na(Sr,Ba)Po4 And Ba2mg(Bo3)2, Kevin Bertschinger

Dissertations, Master's Theses and Master's Reports

There is no debate of the affect that solid-state lighting has had on the world we live in. Throughout the centuries, lighting has continued to improve from kerosene lanterns to white light emitting diodes. Even though lighting today is sufficient there is still much room to improve color rendering index and efficiency. An active area of research to improve today's lighting technology is by doping inorganic phosphors with luminescent ion centers. There have been numerous reports of inorganic phosphors showing a variety of emission color and luminescence. In this thesis we discuss two new inorganic phosphors codoped with Eu2+ …


Physics And Applications Of Exceptional Points, Qi Zhong Jan 2019

Physics And Applications Of Exceptional Points, Qi Zhong

Dissertations, Master's Theses and Master's Reports

Exceptional points (EPs) are singularities that arise in non-Hermitian physics. Crossing EPs is believed to be related with phase transitions between parity-time-(PT-)symmetric phase and broken PT phase. Owing to their peculiar topology, EPs can remotely induce observable effects when encircled by closed trajectories in the parameter space. In this dissertation, first of all, we investigate the extreme dynamics of non-Hermitian systems near higher order EPs constructed using the bosonic algebra method. The strong power oscillations for certain initial conditions can occur as a result of the peculiar eigenspace geometry and its dimensionality collapse near these singularities. And in the PT …


Novel Faraday Rotation Effects Observed In Ultra-Thin Iron Garnet Films, Brandon Blasiola Jan 2018

Novel Faraday Rotation Effects Observed In Ultra-Thin Iron Garnet Films, Brandon Blasiola

Dissertations, Master's Theses and Master's Reports

Recent work performed by A. Chakravarty and M. Levy showed experimentally a dramatic increase in the specific Faraday Rotation (FR) of the iron garnet Bi0.8Lu0.2Gd2Fe5O12. A theoretical model, based purely on classical electrodynamics, attempting to explain this behavior was developed by colleagues in Russia that not only confirmed the asymptotic increase in the specific FR at sub-50nm film thicknesses but also suggested that the specific FR should exhibit significant fluctuations at sub-500 nm film thicknesses. The original data points were widespread with steps of 50 nm or more between data …


Non-Hermitian Matter-Wave Mixing In Bose-Einstein Condensates: Dissipation-Induced Amplification, S. Wuster, Ramy El-Ganainy Jul 2017

Non-Hermitian Matter-Wave Mixing In Bose-Einstein Condensates: Dissipation-Induced Amplification, S. Wuster, Ramy El-Ganainy

Department of Physics Publications

We investigate the nonlinear scattering dynamics in interacting atomic Bose-Einstein condensates under non-Hermitian dissipative conditions. We show that, by carefully engineering a momentum-dependent atomic loss profile, one can achieve matter-wave amplification through four-wave mixing in a quasi-one-dimensional nearly-free-space setup—a process that is forbidden in the counterpart Hermitian systems due to energy mismatch. Additionally, we show that similar effects lead to rich nonlinear dynamics in higher dimensions. Finally, we propose a physical realization for selectively tailoring the momentum-dependent atomic dissipation. Our strategy is based on a two-step process: (i) exciting atoms to narrow Rydberg or metastable excited states, and (ii) introducing …


New Flexible Channels For Room Temperature Tunneling Field Effect Transistors, Boyi Hao, Anjana Asthana, Paniz Khanmohammadi, Paul Bergstrom, Douglas R. Banyai, Madhusudan A. Savaikar, John A. Jaszczak, Yoke Khin Yap Feb 2016

New Flexible Channels For Room Temperature Tunneling Field Effect Transistors, Boyi Hao, Anjana Asthana, Paniz Khanmohammadi, Paul Bergstrom, Douglas R. Banyai, Madhusudan A. Savaikar, John A. Jaszczak, Yoke Khin Yap

Department of Physics Publications

Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used as the flexible tunneling channels of TFETs at room temperatures. The electrical insulating BNNTs are used as the one-dimensional (1D) substrates to confine the uniform formation of Fe QDs on their surface as the flexible tunneling channel. Consistent semiconductor-like transport behaviors under various …


An Assessment Of The Validity Of The Kinetic Model For Liquid-Vapor Phase Change By Examining Cryogenic Propellants, Kishan Bellur Jan 2016

An Assessment Of The Validity Of The Kinetic Model For Liquid-Vapor Phase Change By Examining Cryogenic Propellants, Kishan Bellur

Dissertations, Master's Theses and Master's Reports

Evaporation is ubiquitous in nature and occurs even in a microgravity space envi- ronment. Long term space missions require storage of cryogenic propellents and an accurate prediction of phase change rates. Kinetic theory has been used to model and predict evaporation rates for over a century but the reported values of accommodation coefficients are highly inconsistent and no accurate data is available for cryogens. The proposed study involves a combined experimental and computational approach to ex- tract the accommodation coefficients. Neutron imaging is used as the visualization technique due to the difference in attenuation between the cryogen and the metallic …


Relativistic Configuration Interaction Calculations Of The Atomic Properties Of Selected Transition Metal Positive Ions; Ni Ii, V Ii And W Ii, Marwa Hefny Abdalmoneam Jan 2015

Relativistic Configuration Interaction Calculations Of The Atomic Properties Of Selected Transition Metal Positive Ions; Ni Ii, V Ii And W Ii, Marwa Hefny Abdalmoneam

Dissertations, Master's Theses and Master's Reports

Relativistic Configuration Interaction (RCI) method has been used to investigate atomic properties of the singly ionized transition metals including Nickel (Ni II), Vanadium (V II), and Tungsten (W II). The methodology of RCI computations was also improved. Specifically, the method to shift the energy diagonal matrix of the reference configurations was modified which facilitated including the effects of many electronic configurations that used to be difficult to be included in the energy matrix and speeded-up the final calculations of the bound and continuum energy spectrum. RCI results were obtained for three different cases:

  1. Atomic moments and polarizabilities of Ni II; …


Light Transport In Pt-Invariant Photonic Structures With Hidden Symmetries, M. H. Teimourpour, Ramy El-Ganainy, A. Eisfeld, A. Szameit, Demetrios N. Christodoulides Nov 2014

Light Transport In Pt-Invariant Photonic Structures With Hidden Symmetries, M. H. Teimourpour, Ramy El-Ganainy, A. Eisfeld, A. Szameit, Demetrios N. Christodoulides

Department of Physics Publications

We introduce a recursive bosonic quantization technique for generating classical PT photonic structures that possess hidden symmetries and higher order exceptional points. We study light transport in these geometries and we demonstrate that perfect state transfer is possible only for certain initial conditions. Moreover, we show that for the same propagation direction, left and right coherent transports are not symmetric with field amplitudes following two different trajectories. A general scheme for identifying the conservation laws in such PT-symmetric photonic networks is also presented.


Exceptional Points And Lasing Self-Termination In Photonic Molecules, Ramy El-Ganainy, M. Khajavikhan, Li Ge Jul 2014

Exceptional Points And Lasing Self-Termination In Photonic Molecules, Ramy El-Ganainy, M. Khajavikhan, Li Ge

Department of Physics Publications

We investigate the rich physics of photonic molecule lasers using a non-Hermitian dimer model.We show that several interesting features, predicted recently using a rigorous steady-state ab initio laser theory (SALT), can be captured by this toy model. In particular, we demonstrate the central role played by exceptional points (EPs) in both pump-selective lasing and laser self-termination phenomena. Due to its transparent mathematical structure, our model provides a lucid understanding for how different physical parameters (optical loss, modal coupling between microcavities, and pump profiles) affect the lasing action. Interestingly, our analysis also confirms that, for frequency mismatched cavities, operation in the …


Supersymmetric Mode Converters, Matthias Heinrich, Mohammad-Ali Miri, Simon Stützer, Ramy El-Ganainy, Stefan Nolte, Alexander Szameit, Demetrios N. Christodoulides Apr 2014

Supersymmetric Mode Converters, Matthias Heinrich, Mohammad-Ali Miri, Simon Stützer, Ramy El-Ganainy, Stefan Nolte, Alexander Szameit, Demetrios N. Christodoulides

Department of Physics Publications

Originally developed in the context of quantum field theory, the concept of supersymmetry can be used to systematically design a new class of optical structures. In this work, we demonstrate how key features arising from optical supersymmetry can be exploited to control the flow of light for mode division multiplexing applications. Superpartner configurations are experimentally realized in coupled optical networks, and the corresponding light dynamics in such systems are directly observed. We show that supersymmetry can be judiciously utilized to remove the fundamental mode of a multimode optical structure, while establishing global phase matching conditions for the remaining set of …


On-Chip Multi 4-Port Optical Circulators, Ramy El-Ganainy, Miguel Levy Feb 2014

On-Chip Multi 4-Port Optical Circulators, Ramy El-Ganainy, Miguel Levy

Department of Physics Publications

We present a new geometry for on-chip optical circulators based on waveguide arrays. The optical array is engineered to mimic the Fock space representation of a noninteracting two-site Bose–Hubbard Hamiltonian. By introducing a carefully tailored magnetooptic nonreciprocity to these structures, the array operates in the perfect transfer and surface Bloch oscillation modes in the forward and backward propagation directions, respectively. We show that an array made of ð2N þ 1Þ waveguide channels can function as N 4-port optical circulators with very large isolation ratios and low forward losses. Numerical analysis using beam propagation method indicates a large bandwidth of operation.


On-Chip Non-Reciprocal Optical Devices Based On Quantum Inspired Photonic Lattices, Ramy El-Ganainy, A. Eisfeld, Miguel Levy, Demetrios N. Christodoulides Jan 2013

On-Chip Non-Reciprocal Optical Devices Based On Quantum Inspired Photonic Lattices, Ramy El-Ganainy, A. Eisfeld, Miguel Levy, Demetrios N. Christodoulides

Department of Physics Publications

We propose integrated optical structures that can be used as isolators and polarization splitters based on engineered photonic lattices. Starting from optical waveguide arrays that mimic Fock space (quantum state with a well-defined particle number) representation of a non-interacting two-site Bose Hubbard Hamiltonian, we show that introducing magneto-optic nonreciprocity to these structures leads to a superior optical isolation performance. In the forward propagation direction, an input TM polarized beam experiences a perfect state transfer between the input and output waveguide channels while surface Bloch oscillations block the backward transmission between the same ports. Our analysis indicates a large isolation ratio …


Simulation Of Charge Transport In Multi-Island Tunneling Devices: Application To Disordered One-Dimensional Systems At Low And High Biases, Madhusudan A. Savaikar, Douglas R. Banyai, Paul Bergstrom, John A. Jaszczak Jan 2013

Simulation Of Charge Transport In Multi-Island Tunneling Devices: Application To Disordered One-Dimensional Systems At Low And High Biases, Madhusudan A. Savaikar, Douglas R. Banyai, Paul Bergstrom, John A. Jaszczak

Department of Physics Publications

Although devices have been fabricated displaying interesting single-electron transport characteristics, there has been limited progress in the development of tools that can simulate such devices based on their physical geometry over a range of bias conditions up to a few volts per junction. In this work, we present the development of a multi-island transport simulator, MITS, a simulator of tunneling transport in multi-island devices that takes into account geometrical and material parameters, and can span low and high source-drain biases. First, the capabilities of MITS are demonstrated by modeling experimentaldevices described in the literature, and showing that the simulated device …


Mechanism For Spatial Organization In Quantum Dot Self-Assembly, Da Gao, Adam Kaczynski, John A. Jaszczak Apr 2005

Mechanism For Spatial Organization In Quantum Dot Self-Assembly, Da Gao, Adam Kaczynski, John A. Jaszczak

Department of Physics Publications

Inspired by experimental observations of spatially ordered growth hillocks on the (001) surfaces of natural graphite crystals, a mechanism for spatial organization in quantum dotself-assembly is proposed. The regular arrangement of steps from a screw dislocation-generated growth spiral provides the overall template for such ordering. An ordered array of quantum dots may be formed or nucleated from impurities driven to the step corners by diffusion and by their interactions with the spiral’s steps and kinks. Kinetic Monte Carlo simulation of a solid-on-solid model supports the feasibility of such a mechanism.


Monte Carlo Simulations Of Surface Phase Transitions In A Modulated Layered Structure, Da Gao, John A. Jaszczak Apr 2003

Monte Carlo Simulations Of Surface Phase Transitions In A Modulated Layered Structure, Da Gao, John A. Jaszczak

Department of Physics Publications

A solid-on-solid model of a layered crystal, which has five layers per repeat period in the direction normal to the surface and with only nearest-neighbor interactions, is studied using Monte Carlo simulation to investigate the relationship between crystal structure and the corresponding surface phases. Equilibrium properties, such as the surface specific heat, interface width, and autocorrelation times, are studied as a function of temperature and system size. Results indicate three distinct surface phases exist in this model: a low-temperature flat phase, an intermediate-temperature disordered but flat phase, and a high-temperature rough phase. We suggest the possibility of introducing several intermediate …


Roughening And Preroughening Of Diamond-Cubic {111} Surfaces, Donald L. Woodraska, John A. Jaszczak Jan 1997

Roughening And Preroughening Of Diamond-Cubic {111} Surfaces, Donald L. Woodraska, John A. Jaszczak

Department of Physics Publications

A solid-on-solid model for {111} surfaces of diamond-cubic materials that correctly takes into account the diamond-cubic crystal structure has been developed for Monte Carlo simulation. In addition to a roughening transition at temperature TR, a distinct preroughening transition at TPR≈0.43TR is indicated by divergences in the surface specific heat and order-parameter susceptibility. Preroughening appears to arise naturally in our nearest-neighbor bond model from the entropic freedom available in the nontrivial crystal structure. Preroughening is shown to dramatically lower the nucleation barrier for growth and etching at low driving forces.