Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Iowa State University

2009

Condensed Matter Physics

Articles 1 - 5 of 5

Full-Text Articles in Physics

Analysis Of Nonequilibrium Hcp Precipitate Growth In Fcc Matrices: Application To Al–Ag, Daniel Finkenstadt, Duane D. Johnson Nov 2009

Analysis Of Nonequilibrium Hcp Precipitate Growth In Fcc Matrices: Application To Al–Ag, Daniel Finkenstadt, Duane D. Johnson

Duane D. Johnson

Hexagonal-close-packed (hcp) γ-precipitates with large aspect ratios form rapidly in some face-centered cubic (fcc) solid-solutions. No model explains the observed time-dependent increase in aspect ratio, nor irregular intermediate growth shapes. We propose a nonequilibrium process involving trapezoidal offshoots (controlled only by energetics) that governs the growth behavior (kinetics) and yields nonequilibrium structures in agreement with observation. Then, combining nucleation theory and diffusion-limited growth both of secondary nuclei and ledges, we derive a general growth equation for γ-precipitates due to solute-segregation to precipitate–matrix interfaces that includes our modification of the Jones–Trivedi model for thickening to account for the slow growth of …


Optimal Site-Centered Electronic Structure Basis Set From A Displaced-Center Expansion: Improved Results Via A Priori Estimates Of Saddle Points In The Density, Aftab Alam, Duane D. Johnson Sep 2009

Optimal Site-Centered Electronic Structure Basis Set From A Displaced-Center Expansion: Improved Results Via A Priori Estimates Of Saddle Points In The Density, Aftab Alam, Duane D. Johnson

Duane D. Johnson

Site-centered, electronic-structure methods use an expansion inside nonoverlapping “muffin-tin” (MT) spheres plus an interstitial basis set. As the boundary separating the more spherical from nonspherical density between atoms, the “saddle-point” radii (SPR) in the density provide an optimal spherical region for expanding in spherical harmonics, as used in augmented plane wave, muffin-tin orbital, and multiple-scattering [Korringa, Kohn, and Rostoker (KKR)] methods. These MT-SPR guarantee unique, convex Voronoi polyhedra at each site, in distinction to Bader topological cells. We present a numerically fast, two-center expansion to find SPR a priori from overlapping atomic charge densities, valid also for disordered alloys. We …


Surface Geometry Of C60 On Ag(111), H. I. Li, K. Pussi, K. J. Hanna, Lin-Lin Wang, Duane D. Johnson, H.-P. Cheng, H. Shin, S. Curtarolo, W. Moritz, J. A. Smerdon, R. Mcgrath, R. D. Diehl Jul 2009

Surface Geometry Of C60 On Ag(111), H. I. Li, K. Pussi, K. J. Hanna, Lin-Lin Wang, Duane D. Johnson, H.-P. Cheng, H. Shin, S. Curtarolo, W. Moritz, J. A. Smerdon, R. Mcgrath, R. D. Diehl

Duane D. Johnson

The geometry of adsorbed C60 influences its collective properties. We report the first dynamical low-energy electron diffraction study to determine the geometry of a C60 monolayer, Ag(111)−(23√×23√)30°−C60, and related density functional theory calculations. The stable monolayer has C60 molecules in vacancies that result from the displacement of surface atoms. C60 bonds with hexagons down, with their mirror planes parallel to that of the substrate. The results indicate that vacancy structures are the rule rather than the exception for C60 monolayers on close-packed metal surfaces.


Quantitative Prediction Of Twinning Stress In Fcc Alloys: Application To Cu-Al, Sandeep A. Kibey, Lin-Lin Wang, J. B. Liu, H. T. Johnson, H. Sehitoglu, Duane D. Johnson Jun 2009

Quantitative Prediction Of Twinning Stress In Fcc Alloys: Application To Cu-Al, Sandeep A. Kibey, Lin-Lin Wang, J. B. Liu, H. T. Johnson, H. Sehitoglu, Duane D. Johnson

Duane D. Johnson

Twinning is one of most prevalent deformation mechanisms in materials. Having established a quantitative theory to predict onset twinning stress τcrit in fcc elemental metals from their generalized planar-fault-energy (GPFE) surface, we exemplify its use in alloys where the Suzuki effect (i.e., solute energetically favors residing at and near planar faults) is operative; specifically, we apply it in Cu-xAl (x is 0, 5, and 8.3 at. %) in comparison with experimental data. We compute the GPFE via density-functional theory, and we predict the solute dependence of the GPFE and τcrit, in agreement with measured values. We show that τcrit correlates …


Bcc-To-Hcp Transformation Pathways For Iron Versus Hydrostatic Pressure: Coupled Shuffle And Shear Modes, J. B. Liu, Duane D. Johnson Apr 2009

Bcc-To-Hcp Transformation Pathways For Iron Versus Hydrostatic Pressure: Coupled Shuffle And Shear Modes, J. B. Liu, Duane D. Johnson

Duane D. Johnson

Using density-functional theory, we calculate the potential-energy surface (PES), minimum-energy pathway (MEP), and transition state (TS) versus hydrostatic pressure σhyd for the reconstructive transformation in Fe from body-centered cubic (bcc) to hexagonal closed-packed (hcp). At fixed σhyd, the PES is described by coupled shear (ϵ) and shuffle (η) modes and is determined from structurally minimized hcp-bcc energy differences at a set of (η,ϵ). We fit the PES using symmetry-adapted polynomials, permitting the MEP to be found analytically. The MEP is continuous and fully explains the transformation and its associated magnetization and volume discontinuity at TS. We show that σhyd (while …