Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Variation Of Magnetostriction With Temperature In Tb5si2.2ge1.8 Single Crystal, A. P. Ring, H. L. Ziegler, Thomas A. Lograsso, Deborah L. Schlagel, J. E. Snyder, David C. Jiles Apr 2006

Variation Of Magnetostriction With Temperature In Tb5si2.2ge1.8 Single Crystal, A. P. Ring, H. L. Ziegler, Thomas A. Lograsso, Deborah L. Schlagel, J. E. Snyder, David C. Jiles

Ames Laboratory Conference Papers, Posters, and Presentations

The Tb5(SixGe4−x) alloy system is similar to the better known Gd5(SixGe4−x), except it has a more complex magnetic and structural phase diagram. Gd5(SixGe1−x)4 has received much attention recently due to its giant magnetocaloric effect, colossal magnetostriction and giant magnetoresistance in the vicinity of a first order combined magnetic-structural phase transition. The magnetostriction changes that accompany the phase transitions of single crystal Tb5(Si2.2Ge1.8) have been investigated at temperatures between 20 and150 K by measurements of ...


Three-Dimensional Metallic Photonic Crystals Fabricated By Soft Lithography For Midinfrared Applications, Jae-Hwang Lee, Chang-Hwan Kim, Yong-Sung Kim, Kai-Ming Ho, Kristen P. Constant, Cha-Hwan Oh Jan 2006

Three-Dimensional Metallic Photonic Crystals Fabricated By Soft Lithography For Midinfrared Applications, Jae-Hwang Lee, Chang-Hwan Kim, Yong-Sung Kim, Kai-Ming Ho, Kristen P. Constant, Cha-Hwan Oh

Materials Science and Engineering Publications

We present an efficient method of fabricating freestanding three-dimensional metallic photonic crystals using soft lithography. Low cost and ease of fabrication are achieved through gold sputter deposition on a freestanding woodpile polymer template. We compare experimental results to theoretical calculations for tetragonal and face-centered-tetragonal structures as a function of the number of layers. The photonic crystals behave like full metallic structures with a photonic band edge at a wavelength of 3.5μm. The rejection rates of the structures are about 10dB/layer.