Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Fe–Ga/Pb(Mg1/3nb2/3)O3–Pbtio3 Magnetoelectric Laminate Composites, Shuxiang Dong, Junyi Zhai, Naigang Wang, Feiming Bai, Jiefang Li, D. Viehland, Thomas A. Lograsso Nov 2005

Fe–Ga/Pb(Mg1/3nb2/3)O3–Pbtio3 Magnetoelectric Laminate Composites, Shuxiang Dong, Junyi Zhai, Naigang Wang, Feiming Bai, Jiefang Li, D. Viehland, Thomas A. Lograsso

Ames Laboratory Publications

We have found large magnetoelectric (ME) effects in long-type laminate composites of Fe–20%Ga magnetostrictive alloys and piezoelectric Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. At lower frequencies, the ME voltage coefficient of a laminate with longitudinally magnetized and longitudinally polarized (i.e., L-L mode) layers was 1.41 V/Oe (or1.01 V/cm Oe). Near the natural resonant frequency ( ∼ 91 kHz) of the laminate, the ME voltage coefficients were found to be dramatically increased to 50.7 V/Oe (36.2 V/cm Oe)for the L-L mode. In ...


Magnetic Force Microscopy Investigation Of Domain Structures In Fe–X At. % Ga Single Crystals (12, Feiming Bai, Jiefang Li, D. Viehland, D. Wu, Thomas A. Lograsso Jul 2005

Magnetic Force Microscopy Investigation Of Domain Structures In Fe–X At. % Ga Single Crystals (12, Feiming Bai, Jiefang Li, D. Viehland, D. Wu, Thomas A. Lograsso

Ames Laboratory Publications

The domain structure of furnace-cooled (FC) and post-annealed (PA) Fe–x at. % Ga (x = 12, 20, and 25) crystals has been investigated by magnetic force microscopy. For both FC and PA Fe–12 at. % Ga, the domains were found to be well-aligned and oriented along the [100] direction. For Fe–20 at. % Ga, although a preferred [100] orientation remained, a difference in morphology was found between FC and PA conditions—in the PA condition, clear dendritic domains were observed. For both FC and PA Fe–25 at. % Ga, a much reduced [100] preferred domain orientation was found, the domain size ...


Magnetic Field Dependence Of Galfenol Elastic Properties, G. Petculescu, K. B. Hathaway, Thomas A. Lograsso, M. Wun-Fogle, A. E. Clark May 2005

Magnetic Field Dependence Of Galfenol Elastic Properties, G. Petculescu, K. B. Hathaway, Thomas A. Lograsso, M. Wun-Fogle, A. E. Clark

Ames Laboratory Conference Papers, Posters, and Presentations

Elastic shear moduli measurements on Fe100−xGax (x = 12–33) single crystals (via resonant ultrasound spectroscopy) with and without a magnetic field and within 4–300 K are reported. The pronounced softening of the tetragonal shear modulus c′ is concluded to be, based on magnetoelastic coupling, the cause of the second peak in the tetragonal magnetostriction constant λ100 near x = 28. Exceedingly high ΔE effects ( ∼ 25%), combined with the extreme softness in c′ (c′<10 GPa), suggest structural changes take place, yet, gradual in nature, as the moduli show a smooth dependence on Ga concentration, temperature, and magnetic field. Shear anisotropy (c44/c′) as high as 14.7 was observed for Fe71.2Ga28.8.


Temperature Dependence Of The Magnetic Anisotropy And Magnetostriction Of Fe100−Xgax (X = 8.6, 16.6, 28.5), A. E. Clark, M. Wun-Fogle, J. B. Restorff, Kevin W. Dennis, Thomas A. Lograsso, R. William Mccallum May 2005

Temperature Dependence Of The Magnetic Anisotropy And Magnetostriction Of Fe100−Xgax (X = 8.6, 16.6, 28.5), A. E. Clark, M. Wun-Fogle, J. B. Restorff, Kevin W. Dennis, Thomas A. Lograsso, R. William Mccallum

Ames Laboratory Conference Papers, Posters, and Presentations

The temperature dependence of the lowest order magnetic anisotropy constant K1 and the lowest order saturation magnetostriction constant, (3/2)λ100, were measured from 4 K to 300 K for Fe91.4Ga8.6,Fe83.4Ga16.6, and Fe71.5Ga28.5 and were compared to the normalized magnetization power law, ml(l+1)/2. Fe91.4Ga8.6 maintains the magnetostriction anomaly of Fe (dλ100/dT>0) and K1 is a reasonable fit to the ml(l+1)/2power law with ...


Magnetic Anisotropy And Phase Transitions In Single-Crystal Tb5(Si2.2ge1.8), M. Han, J. E. Snyder, W. Tang, Thomas A. Lograsso, Deborah L. Schlagel, David C. Jiles May 2005

Magnetic Anisotropy And Phase Transitions In Single-Crystal Tb5(Si2.2ge1.8), M. Han, J. E. Snyder, W. Tang, Thomas A. Lograsso, Deborah L. Schlagel, David C. Jiles

Ames Laboratory Conference Papers, Posters, and Presentations

The Tb5(SixGe4−x) alloy system has many features in common with the Gd5(SixGe4−x)system although it has a more complex magnetic and structural phase diagram. This paper reports on the magnetic anisotropy and magnetic phase transition of single-crystalTb5(Si2.2Ge1.8) which has been investigated by the measurements of M-H and M-T along the a, b, and c axes. The variation of 1/χ vs T indicates that there is a transition from paramagnetic to ferromagnetic at Tc = 110 K. Below this ...


Thermal Expansion And Gruneisen Parameters In Some Pr–Ni–Si Compounds, S. H. Song, David C. Jiles, J. E. Snyder, A. O. Pecharsky, D. Wu, Kevin W. Dennis, Thomas A. Lograsso, R. William Mccallum May 2005

Thermal Expansion And Gruneisen Parameters In Some Pr–Ni–Si Compounds, S. H. Song, David C. Jiles, J. E. Snyder, A. O. Pecharsky, D. Wu, Kevin W. Dennis, Thomas A. Lograsso, R. William Mccallum

Ames Laboratory Conference Papers, Posters, and Presentations

In this study, the thermal expansion and Gruneisen parameter of polycrystalline “Pr5Ni2Si3” and “Pr15Ni7Si10” were investigated over the temperature range of 5–300 K. Calculations of the phonon contribution to thermal expansion were made, which allowed the magnetic contribution to thermal expansion to be calculated from the difference between the total thermal expansion and the phonon contribution. This resulted in a temperature-dependent magnetic contribution to thermal expansion that varied with the magnetic ordering of the material. The results show two magnetic transitions in each compound, the higher temperature transition corresponding ...


Magnetostrictive And Magnetoelectric Behavior Of Fe–20 At. % Ga/Pb(Zr,Ti)O3 Laminates, Shuxiang Dong, Junyi Zhai, Feiming Bai, Jiefang Li, D. Viehland, Thomas A. Lograsso Apr 2005

Magnetostrictive And Magnetoelectric Behavior Of Fe–20 At. % Ga/Pb(Zr,Ti)O3 Laminates, Shuxiang Dong, Junyi Zhai, Feiming Bai, Jiefang Li, D. Viehland, Thomas A. Lograsso

Ames Laboratory Publications

The magnetostrictive and magnetoelectric (ME) properties of laminate composites of Fe–20 at. % Ga and Pb(Zr,Ti)O3 (PZT) have been studied for laminates of different geometries. The results show that (i) a long-type magnetostrictive Fe–20 at. % Ga crystal plate oriented along 〈001〉c and magnetized in its longitudinal (or length) direction has higher magnetostriction than a disk-type one; and consequently (ii) a long-type Fe–20 at. % Ga/PZT laminate has a giant ME effect, and is sensitive to low-level magnetic fields.