Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Posterminaries: More Or Less Modern, Alexander H. King Nov 2007

Posterminaries: More Or Less Modern, Alexander H. King

Alexander H. King

It is yet another sign that I am aging. More and more often when young researchers hand me a written report of their research, I find myself criticizing their introductory section: “You need to start your literature survey with the original papers on this topic. Go and read…” followed by a citation to some classic of the learned literature.


Control Of Porosity In Fluoride Thin Films Prepared By Vapor Deposition, Alexander H. King Jul 2007

Control Of Porosity In Fluoride Thin Films Prepared By Vapor Deposition, Alexander H. King

Alexander H. King

We have measured the porosity in thin films of lithium fluoride (LiF), magnesium fluoride (MgF2), barium fluoride (BaF2), and calcium fluoride (CaF2) as a function of the substrate temperature for films deposited by thermal evaporation onto glass substrates. The amount of porosity in the thin films was measured using an atomic force microscope and a quartz crystal thickness monitor. The porosity was very sensitive to the substrate temperature and decreased as the substrate temperature increased. Consistent behavior was observed among all of the materials in this study.


Posterminaries: Full Circle, Alexander H. King Jul 2007

Posterminaries: Full Circle, Alexander H. King

Alexander H. King

A few years ago, I was walking near the old Union Station in Pittsburgh with a colleague only slightly younger than myself, when we happened upon some large-scale relics of the steel industry displayed for public viewing. “You don’t see too many of those in public parking lots,” I offered. “Um… what is it?” was the response. I suppose I was just a little surprised that a prominent materials scientist did not recognize a Bessemer converter—arguably the principal source of wealth during the U.S. industrial revolution—but this conversation took place back when steel was in decline, and many university Materials …


Density Functional Study Of Structural Trends For Late-Transition-Metal 13-Atom Clusters, Lin-Lin Wang, Duane D. Johnson Jun 2007

Density Functional Study Of Structural Trends For Late-Transition-Metal 13-Atom Clusters, Lin-Lin Wang, Duane D. Johnson

Duane D. Johnson

Because reactivity increases as particle size decreases and competition between numerous structures are possible, which affects catalytic and magnetic properties, we study the structural trends of late-transition-metal 13-atom clusters using density functional theory within the generalized gradient approximation to exchange-correlation functional. We consider open structural motifs, such as bilayer and cubic (recently found to have lower energy), and find new bilayer candidates that are even lower in energy. To study the influence of d-orbital filling on structural trends, we focus on Pt, Pd, and Rh clusters and find several new, low-energy structures for Pt13 and Pd13 from searches using a …


Thermal Effects On Mechanical Grinding-Induced Surface Texture In Tetragonal Piezoelectrics, Wonyoung Chang, Alexander H. King, Keith J. Bowman Jan 2007

Thermal Effects On Mechanical Grinding-Induced Surface Texture In Tetragonal Piezoelectrics, Wonyoung Chang, Alexander H. King, Keith J. Bowman

Alexander H. King

The effect of temperature on grinding-induced texture in tetragonal lead zirconate titanate (PZT) and lead titanate (PT) has been investigated using in situ x-ray diffraction (XRD) with an area detector. In contrast with previous results on electrical poling, mechanically-ground PT and soft PZT materials retain strong ferroelastic textures during thermal cycling, even after excursions to temperatures slightly above the Curie temperature. The relationship between the residual stresses in the surface region, caused by grinding, and those resulting from domain wall motion is elucidated by in situ texture measurements obtained during thermal cycling.


How Surface Stresses Lead To Size-Dependent Mechanics Of Tensile Deformation In Nanowires, M. Ravi Shankar, Alexander H. King Jan 2007

How Surface Stresses Lead To Size-Dependent Mechanics Of Tensile Deformation In Nanowires, M. Ravi Shankar, Alexander H. King

Alexander H. King

It has been proposed that surface and interface stresses can modify the elastic behavior in nanomaterials such as nanowires. The authors show that surface stresses modify the tensile response of nanowires only when nonlinear elastic effects become important leading to cross terms between the applied stress and the surface stress. These effects are only significant when the radius of the nanowire is of the order of a few nanometers. The resulting alteration of tensile stiffness, though effected in part by the nonlinear elastic modulus, is particularly wrought by a modification of the stress state in the deformed nanowire.


Energy Pathways And Directionality In Deformation Twinning, S. Kibey, J. B. Liu, Duane D. Johnson, H. Sehitoglu Jan 2007

Energy Pathways And Directionality In Deformation Twinning, S. Kibey, J. B. Liu, Duane D. Johnson, H. Sehitoglu

Duane D. Johnson

We present ab initiodensity functional theory calculations of twinning energy pathways for two opposite twinning modes, (111)[112¯] and (111)[1¯1¯2], in fcc materials to examine the directional nature of twinning which cannot be explained by classical twin nucleationmodels or the “twinnability” criterion. By accounting for these energy pathways in a multiscale model, we quantitatively predict the critical twinning stress for the (111)[1¯1¯2] mode to be substantially higher compared to the favorable (111)[112¯] mode (whose predicted stresses are in agreement with experiment), thus, ruling out twinning in the (111)[1¯1¯2] mode.