Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Up-Conversion Emissions Of Er3 Doped Gd2(Wo4)3 Phosphors, Grayson Wiggins Apr 2016

Up-Conversion Emissions Of Er3 Doped Gd2(Wo4)3 Phosphors, Grayson Wiggins

GS4 Georgia Southern Student Scholars Symposium

Photon up-conversion is a luminescent process which changes incoming low energy light into a higher energy form of light, such as infrared into visible light. This process is very popular and applicable to TV displays, bio-labels, and solar cells. The work to be presented is about erbium's ability to convert infrared laser light in green light by photon up-conversion. The trivalent erbium is doped into gadolinium tungstate in order to research the efficiency and mechanisms involved in the up-conversion process. Although still currently being research, it has already shown promising results including low photon energies, economic synthesis, and naked-eye up-conversion, …


Intramolecular Cross-Linking Of Beta Subunits And Pegylation Of Bovine Stroma Free Hemoglobin For Use As A Hemoglobin Based Oxygen Carrier, Gil Salazar Apr 2016

Intramolecular Cross-Linking Of Beta Subunits And Pegylation Of Bovine Stroma Free Hemoglobin For Use As A Hemoglobin Based Oxygen Carrier, Gil Salazar

GS4 Georgia Southern Student Scholars Symposium

Purified Bovine Stroma-Free Hemoglobin's (BSFHb) two beta subunits where intramolecularly cross-linked (BXLHb) using bis(3,5-dibromosalicyl) fumarate (DBBF) and further modified with Polyethylene glycol (BPEGXLHb) for possible use as a Hemoglobin Based Oxygen Carrier (HBOC). Each stage of modification was characterized by size exclusion chromatography and fluorescence methods. We prepared several different molar ratios of DBBF and BSFHb to acquire the highest yield of BXLHb. Cross-linking of the beta subunits will stabilize the whole Hb tetramer from dissociation and prevent unwanted degradation of the HBOC. We prepared a sample modified with PEG (PEGylation) that had a molecular weight of 5kDa. PEGylation increases …


Stereographic Visualization Of Bose-Einstein Condensate Clouds To Measure The Gravitational Constant, Ed Wesley Wells Jan 2016

Stereographic Visualization Of Bose-Einstein Condensate Clouds To Measure The Gravitational Constant, Ed Wesley Wells

Electronic Theses and Dissertations

This thesis describes a set of tools that can be used for the rapid design of atom interferometer schemes suitable for measuring Newton's Universal Gravitation constant also known as "Big G". This tool set is especially applicable to Bose--Einstein--condensed systems present in NASA's Cold Atom Laboratory experiment to be deployed to the International Space Station in 2017. These tools include a method of approximating the solutions of the nonlinear Schrödinger or Gross--Pitaevskii equation (GPE) using the Lagrangian Variational Method. They also include a set of software tools for translating the approximate solutions of the GPE into images of the optical …


Up-Converted Emissions Of Er3+ Doped Gd2(Wo4)3 Phosphors, Grayson L. Wiggins Jan 2016

Up-Converted Emissions Of Er3+ Doped Gd2(Wo4)3 Phosphors, Grayson L. Wiggins

Electronic Theses and Dissertations

In this work, the up-conversion (UC) emissions of Er3+ in a gadolinium tungstate host was investigated to analyze the possible processes of up-conversion by 1500 nm and 980 nm excitation. Studies were conducted to see how the 4S3/2 -> 4I15/2 transition changed with varying current through the excitation source, varying excitation wavelength, and doping concentration. Power dependent studies revealed that under 1500 nm excitation the 4S3/2 -> 4I15/2 transition needed 3 photons, while 980 nm excitation could do the same transition with 2 photons. It was found that 1500 nm could produce more efficient red emission due to the 4I9/2 …


Modification Of The Fundamental Properties Of Light Through Interaction With Nanostructured Materials, David W. Keene Ii Jan 2016

Modification Of The Fundamental Properties Of Light Through Interaction With Nanostructured Materials, David W. Keene Ii

Electronic Theses and Dissertations

The field of photonics has been growing rapidly over the last few decades as it has endeavored to harness the potential of nanostructured materials to utilize the energy and momentum of electromagnetic radiation on the nanoscale. Using metal nanostructures provides the ability to take advantage of the sub-field of plasmonics which holds the promise of opening the world to vast increases in computational power by circumventing the limitations of conventional current that plague today’s processors. With a thorough understanding of this subject we also get one step closer to increasing the efficiency of solar technology, developing a finer scale of …