Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

City University of New York (CUNY)

Theses/Dissertations

Optics

Strong coupling

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physics

Control Of Molecular Energetics And Transport Via Strong Light-Matter Interaction, Rong Wu Sep 2020

Control Of Molecular Energetics And Transport Via Strong Light-Matter Interaction, Rong Wu

Dissertations, Theses, and Capstone Projects

Strong light-matter coupling in excitonic systems results in the formation of half-light half-matter quasiparticles called exciton polaritons. These hybrid quasiparticles take on the best of both systems, namely, the long-range propagation and coherence arising from the photonic component and the nonlinear interaction from the excitonic component. We develop methods for making high quality factor cavities and investigate the potential applications of these strongly coupled states arising specifically in organic molecular systems.

In the first project we investigate the potential of organic dye molecules to undergo condensation in an optical cavity at room temperature. The second study involves the use of …


Exciton Polaritons In Two-Dimensional Transition Metal Dichalcogenides, Jie Gu Sep 2019

Exciton Polaritons In Two-Dimensional Transition Metal Dichalcogenides, Jie Gu

Dissertations, Theses, and Capstone Projects

Strong interaction between photons and excitons in semiconductors results in the formation of half-light half-matter quasiparticles termed exciton-polaritons. Owing to their hybrid character, they inherit the strong interparticle interaction from their excitonic (matter) component via Coulomb interaction while the photonic component lends the small mass (~105 times lighter than free electrons) and long propagation distances. Additionally, exciton-polaritons also carry properties of the host material excitons such as spin and valley polarization and can be probed via the photons that leak out of the cavities since the photon carries all the information owing to conservation laws. Since the first demonstration …


Control Of Energy Transfer And Molecular Energetics Using Photonic Nanostructures, Rahul Deshmukh Feb 2019

Control Of Energy Transfer And Molecular Energetics Using Photonic Nanostructures, Rahul Deshmukh

Dissertations, Theses, and Capstone Projects

In the last three decades, the design and fabrication of different types of photonic nanostructures have allowed us to control and enhance the interaction of light (or photons) with matter (or excitons). In this work, we demonstrate the use of three different nanostructures to control different material properties. The design and fabrication of the nanostructures is discussed along with the results obtained using characterization techniques of angle-resolved white light reflectivity and transmission, and time-resolved and steady-state photoluminescence experiments. Specifically, we demonstrate the use of Optical Topological Transitions (OTT) in metamaterials to show enhanced efficiency in the non-radiative transfer of energy …