Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Charge State Dynamics And Quantum Sensing With Defects In Diamond, Jacob D. Henshaw Sep 2018

Charge State Dynamics And Quantum Sensing With Defects In Diamond, Jacob D. Henshaw

Dissertations, Theses, and Capstone Projects

In recent years, defect centers in wide band gap semiconductors such as diamond, have received significant attention. Defects offer great utility as single photon emitters, nanoscale sensors, and quantum memories and registers for quantum computation. Critical to the utility of these defects, is their charge state.

In this dissertation, experiments surrounding the charge state dynamics and the carrier dynamics are performed and analyzed. Extensive studies of the ionization and recombination processes of defects in diamond, specifically, the Nitrogen Vacancy (NV) center, have been performed. Diffusion of ionized charge carriers has been imaged indirectly through the recapture of said carriers by …


Quantum And Classical Transport Of 2d Electrons In The Presence Of Long And Short Range Disorder, Jesse Kanter Sep 2018

Quantum And Classical Transport Of 2d Electrons In The Presence Of Long And Short Range Disorder, Jesse Kanter

Dissertations, Theses, and Capstone Projects

This work focuses on the study of electron transport of 2-D electron gas systems in relation to both fundamental properties of the systems such as disorder and scattering mechanisms, as well as unique magnetoresistance (MR) effects. A large portion of the discussion is built around the use of an in plane magnetic field to vary the ratio between the Zeeman energy between electrons of different spins and the Landau level spacing, creating a tool to control the quantization of the density of states (DOS).

This tool is first used to isolate Quantum Positive Magnetoresistance (QPMR), which grants insight to the …


N-Representability In The Quantum Kernel Energy Method, Walter Polkosnik May 2018

N-Representability In The Quantum Kernel Energy Method, Walter Polkosnik

Dissertations, Theses, and Capstone Projects

The Kernel Energy Method (KEM) delivers accurate full molecule energies using less computational resources than standard ab-initio quantum chemical approaches. KEM achieves this efficiency by decomposing a system of atoms into disjoint subsets called kernels. The results of full ab-initio calculations on each individual single kernel and on each double kernel formed by the union of each pair of single kernels are combined in an equation of a form that is specific to KEM to provide an approximation to the full molecule energy. KEM has been demonstrated to give accurate molecular energies over a wide range of systems, chemical methods …


Finding Paths Via Quantum Systems And Its Application For Quantum Algorithms, Daniel S. Koch May 2018

Finding Paths Via Quantum Systems And Its Application For Quantum Algorithms, Daniel S. Koch

Dissertations, Theses, and Capstone Projects

The field of Quantum Information Theory provides the theoretical foundation for the pursuit of quantum computers. The ongoing questions of how quantum computers will be realized and what they will achieve, are both very uncertain. However, worldwide efforts are beginning to converge on some answers, and the future of quantum computers is looking brighter than ever. In contribution to the grand goal that is quantum computing, this thesis serves as a demonstration to the usefulness of quantum over classical computing. The central theme of my work, and my collaborators, is the exploration of using quantum systems as a tool for …