Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Physics

Soarnet, Deep Learning Thermal Detection For Free Flight, Jake T. Tallman Jun 2021

Soarnet, Deep Learning Thermal Detection For Free Flight, Jake T. Tallman

Master's Theses

Thermals are regions of rising hot air formed on the ground through the warming of the surface by the sun. Thermals are commonly used by birds and glider pilots to extend flight duration, increase cross-country distance, and conserve energy. This kind of powerless flight using natural sources of lift is called soaring. Once a thermal is encountered, the pilot flies in circles to keep within the thermal, so gaining altitude before flying off to the next thermal and towards the destination. A single thermal can net a pilot thousands of feet of elevation gain, however estimating thermal locations is not …


Comparing Radiation Shielding Potential Of Liquid Propellants To Water For Application In Space, John Czaplewski Mar 2021

Comparing Radiation Shielding Potential Of Liquid Propellants To Water For Application In Space, John Czaplewski

Master's Theses

The radiation environment in space is a threat that engineers and astronauts need to mitigate as exploration into the solar system expands. Passive shielding involves placing as much material between critical components and the radiation environment as possible. However, with mass and size budgets, it is important to select efficient materials to provide shielding. Currently, NASA and other space agencies plan on using water as a shield against radiation since it is already necessary for human missions. Water has been tested thoroughly and has been proven to be effective. Liquid propellants are needed for every mission and also share similar …


A Study Of The Design Of Adaptive Camber Winglets, Justin J. Rosescu Jun 2020

A Study Of The Design Of Adaptive Camber Winglets, Justin J. Rosescu

Master's Theses

A numerical study was conducted to determine the effect of changing the camber of a winglet on the efficiency of a wing in two distinct flight conditions. Camber was altered via a simple plain flap deflection in the winglet, which produced a constant camber change over the winglet span. Hinge points were located at 20%, 50% and 80% of the chord and the trailing edge was deflected between -5° and +5°. Analysis was performed using a combination of three-dimensional vortex lattice method and two-dimensional panel method to obtain aerodynamic forces for the entire wing, based on different winglet camber configurations. …


An Investigation Of The Anomalous Thrust Capabilities Of The Electromagnetic Drive, Hannah J. Simons Jun 2019

An Investigation Of The Anomalous Thrust Capabilities Of The Electromagnetic Drive, Hannah J. Simons

Physics

The Electromagnetic Drive (EMDrive) is a propellant-less engine concept hypothesized by aero- space engineer Roger Shawyer. Shawyer’s proposed thruster technology is grounded on the theory of electromagnetic resonant behavior exhibited by a radiofrequency cavity, though the source of any generated thrust is undetermined by current physical laws. NASA Eagleworks Laboratories at John- son Space Center conducted a vacuum test campaign to investigate previously reported anomalous thrust capabilities of such a closed radiofrequency cavity, using a low-thrust torsion pendulum. The team published positive, although small-scaled thrust results in 2017. Following NASA Eagleworks breakthrough result and operating under the assumption that the …


Optimizing The Telescope Assembly Alignment Simulator For Sofia, Zoe E. Sharp, Alex Quyenvo, Jennifer Briggs, Brian Eney Oct 2016

Optimizing The Telescope Assembly Alignment Simulator For Sofia, Zoe E. Sharp, Alex Quyenvo, Jennifer Briggs, Brian Eney

STAR Program Research Presentations

The Stratospheric Observatory for Infrared Astronomy (SOFIA) conducts research on a modified Boeing 747sp aircraft. By using a variety of infrared science instruments mounted on a 2.7 meter telescope, researchers can make discoveries about the galactic center, star formation, and various topics associated with a deeper understanding of our universe. To efficiently collect data through the SOFIA instruments, the instruments must be tested and prepared prior to being placed on the aircraft. Therefore, with the use of the Telescope Assembly Alignment Simulator (TAAS), researchers can design and construct improvements needed for these instruments to efficiently perform while in flight. The …


Particle Image Velocimetry Of Transverse Jets In Crossflow, Jesse K. Tsai, Kayla Kuzmich, David Forliti, Kriss Vanderhyde, Nils Sedano Aug 2014

Particle Image Velocimetry Of Transverse Jets In Crossflow, Jesse K. Tsai, Kayla Kuzmich, David Forliti, Kriss Vanderhyde, Nils Sedano

STAR Program Research Presentations

The jet in crossflow (JICF) has been an ongoing study for the past several decades with applications in the field of fluid mechanics. This particular flow field produces vortical structures tied to the entrainment and mixing of two separate fluids. Research of the JICF seeks to determine a model and trajectory scaling law for future designs. This will help future designers to optimize the mixing and homogeneity of the two fluids to decrease emissions from pollutants, make ignition easier, and improve combustion efficiency of rockets.

Our experiment will employ Particle Image Velocimetry (PIV) to determine the fluid motion of the …


Lightweight Uav Launcher, Ben Miller, Christian Valoria, Corinne Warnock, Jake Coutlee Jun 2014

Lightweight Uav Launcher, Ben Miller, Christian Valoria, Corinne Warnock, Jake Coutlee

Mechanical Engineering

This report discusses the design, construction, and testing of a lightweight, portable UAV launcher. There is a current need for a small team of soldiers to launch a US Marine Tier II UAV in a remote location without transport. Research was conducted into existing UAV launcher designs and the pros and cons of each were recorded. This research served as a basis for concept generation during the initial design development stage. It was required that the design weigh less than 110 lbs, occupy a smaller volume than 48" x 24" 18" in its collapsed state, be portable by a single …


On The Growth Rate Of Turbulent Mixing Layers: A New Parametric Model, Jeffrey L. Freeman Mar 2014

On The Growth Rate Of Turbulent Mixing Layers: A New Parametric Model, Jeffrey L. Freeman

Master's Theses

A new parametric model for the growth rate of turbulent mixing layers is proposed. A database of experimental and numerical mixing layer studies was extracted from the literature to support this effort. The domain of the model was limited to planar, spatial, nonreacting, free shear layers that were not affected by artificial mixing enhancement techniques. The model is split into two parts which were each tuned to optimally fit the database; equations for an incompressible growth rate were derived from the error function velocity profile, and a function for a compressibility factor was generalized from existing theory on the convective …


Evolution Of Perturbations In Flow Field Mechanics, Samantha R. Bell, David Forliti, Nils Sedano, Kriss Vanderhyde Jan 2014

Evolution Of Perturbations In Flow Field Mechanics, Samantha R. Bell, David Forliti, Nils Sedano, Kriss Vanderhyde

STAR Program Research Presentations

This project explores the stability analysis of a given flow field. Specifically, where the peak disturbance occurs in a flow as this is the disturbance that is most likely to occur. In rocket combustion, it is important to understand where the maximum disturbance occurs so that the mixing of fuel can be stabilized. The instabilities are the results of frequencies in the area surrounding the flow field. The linear stability governing equations are employed to better understand the disturbance. The governing equations for continuity and momentum in the x and y directions are used to form an equation for the …


Ramjet Combustion Chamber, Paul Cameron Stone Jun 2013

Ramjet Combustion Chamber, Paul Cameron Stone

Aerospace Engineering

A ramjet combustion chamber is designed and some initial assembly fabrication and test completed as a component of a ramjet graduate project for California Polytechnic State University, San Luis Obispo Supersonic Wind Tunnel. The combustor design is driven by a theoretical model created by a Cal Poly graduate student, Harrison Sykes. Temperature, pressure, and fuel flow will be measured.


Telescope Assembly Alignment Simulator Performance Optimization, Joshua G. Thompson, Brian Eney, Zaheer Ali, Bob Thompson Aug 2012

Telescope Assembly Alignment Simulator Performance Optimization, Joshua G. Thompson, Brian Eney, Zaheer Ali, Bob Thompson

STAR Program Research Presentations

The Telescope Assembly Alignment Simulator (TAAS) calibrates scientific instruments (SI’s) that are installed on the Stratospheric Observatory For Infrared Astronomy (SOFIA). An SI’s accuracy is directly dependent on the consistent performance of the TAAS, which has never been fully characterized. After designing various thermal and optical experiments to identify the current unknowns of TAAS, we now have a far better grasp on how the equipment behaves.


Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen Jun 2012

Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen

Aerospace Engineering

This report details the research, design, construction, and testing of a pyrotechnic shock simulation apparatus for spacecraft applications. The apparatus was developed to be used in the Space Environments Lab at California Polytechnic State University. It will be used for testing spacecraft components with dimensions up to 24”x12”x12” as well as CubeSats. Additionally, it may be used as an instructional or demonstrational tool in the Aerospace Department’s space environments course. The apparatus functions by way of mechanical impact of an approximately 20 lb stainless steel swinging hammer. Tests were performed to verify the simulator’s functionality. Suggestions for improvement and further …


Day/Night Band Imager For A Cubesat, Eric Stanton Jun 2012

Day/Night Band Imager For A Cubesat, Eric Stanton

Electrical Engineering

Day/Night Band (DNB) earth sensing and meteorological systems like the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) provide visible wavelength imagery 24 hours a day that is used primarily for cloud imaging in support of weather forecasting. This paper describes a compact push-broom imager that meets low light imaging requirements for DMSP OLS and the NOAA/NASA Joint Polar Satellite System (JPSS) as documented in the Integrated Operational Requirements Document [1] (IORD) including the imager design, system level concepts of operation for data collection, radiometric and spatial calibration, and data transmission to Earth. This small, lightweight imager complies with …


Comparison Of A High Purity Germanium Gamma Ray Spectrometer And A Multidimensional Nai(T1) Scintillation Gamma Ray Spectrometer, Greg Stratton Jul 2011

Comparison Of A High Purity Germanium Gamma Ray Spectrometer And A Multidimensional Nai(T1) Scintillation Gamma Ray Spectrometer, Greg Stratton

Aerospace Engineering

This report compares two different gamma ray spectrometers in terms of performance, operation, and apparatus and also investigates the design and integration challenges of using gamma ray spectrometers in space. The first spectrometer is a one-dimensional high purity germanium (HPGe) spectrometer and the second is a multidimensional NaI(Tl) scintillation spectrometer (MGRS). The key results show that the HPGe exhibits 15 to 27 times better energy resolution than the MGRS, but the MGRS is 52 times more sensitive and removes 177 % more of the background radiation.


Human Powered Helicopter: Observing The Impacts Of Ground Effect And Intermeshed Rotors, Shane Stowe Jun 2011

Human Powered Helicopter: Observing The Impacts Of Ground Effect And Intermeshed Rotors, Shane Stowe

Physics

No abstract provided.


Development Of A Cubesat Instrument For Microgravity Particle Damper Performance Analysis, John Trevor Abel Jun 2011

Development Of A Cubesat Instrument For Microgravity Particle Damper Performance Analysis, John Trevor Abel

Master's Theses

Spacecraft pointing accuracy and structural longevity requirements often necessitate auxiliary vibration dissipation mechanisms. However, temperature sensitivity and material degradation limit the effectiveness of traditional damping techniques in space. Robust particle damping technology offers a potential solution, driving the need for microgravity characterization. A 1U cubesat satellite presents a low cost, low risk platform for the acquisition of data needed for this evaluation, but severely restricts available mass, volume, power and bandwidth resources. This paper details the development of an instrument subject to these constraints that is capable of capturing high resolution frequency response measurements of highly nonlinear particle damper dynamics.