Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Avalanche Statistics From Data With Low Time Resolution, Michael Leblanc, Aya Nawano, Wendelin J. Wright, Xiaojun Gu, Jonathan T. Uhl, Karin A. Dahmen Nov 2016

Avalanche Statistics From Data With Low Time Resolution, Michael Leblanc, Aya Nawano, Wendelin J. Wright, Xiaojun Gu, Jonathan T. Uhl, Karin A. Dahmen

Faculty Journal Articles

Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distribution …


Concerted Hydrogen-Bond Breaking By Quantum Tunneling In The Water Hexamer Prism, Jeremy O. Richardson, Cristobal Perez, Simon Lobsiger, Adam A. Reid, Berhane Temelso, George C. Shields, Zbigniew Kisiel, David J. Wales, Brooks H. Pate, Stuart C. Althorpe Jan 2016

Concerted Hydrogen-Bond Breaking By Quantum Tunneling In The Water Hexamer Prism, Jeremy O. Richardson, Cristobal Perez, Simon Lobsiger, Adam A. Reid, Berhane Temelso, George C. Shields, Zbigniew Kisiel, David J. Wales, Brooks H. Pate, Stuart C. Althorpe

Faculty Journal Articles

The nature of the intermolecular forces between water molecules is the same in small hydrogen-bonded clusters as in the bulk. The rotational spectra of the clusters therefore give insight into the intermolecular forces present in liquid water and ice. The water hexamer is the smallest water cluster to support low-energy structures with branched three-dimensional

hydrogen-bond networks, rather than cyclic two-dimensional topologies. Here we report measurements of splitting patterns in rotational transitions of the water hexamer prism, and we used quantum simulations to show that they result from geared and antigeared rotations of a pair of water molecules. Unlike previously reported …