Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Brigham Young University

DSMC

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physics

Comparing Theory And Experiment For Analyte Transport In The First Vacuum Stage Of The Inductively Coupled Plasma Mass Spectrometer, Matthew R. Zachreson Jul 2015

Comparing Theory And Experiment For Analyte Transport In The First Vacuum Stage Of The Inductively Coupled Plasma Mass Spectrometer, Matthew R. Zachreson

Theses and Dissertations

The inductively coupled plasma mass spectrometer (ICP-MS) has been used in laboratories for many years. The majority of the improvements to the instrument have been done empirically through trial and error. A few fluid models have been made, which have given a general description of the flow through the mass spectrometer interface. However, due to long mean free path effects and other factors, it is very difficult to simulate the flow details well enough to predict how changing the interface design will change the formation of the ion beam. Towards this end, Spencer et al. developed FENIX, a direct simulation …


Comparing Theory And Experiment For Analyte Transport In The First Vacuum Stage Of The Inductively Coupled Plasma Mass Spectrometer, Matthew R. Zachreson Dec 2012

Comparing Theory And Experiment For Analyte Transport In The First Vacuum Stage Of The Inductively Coupled Plasma Mass Spectrometer, Matthew R. Zachreson

Theses and Dissertations

The Direct Simulation Monte Carlo algorithm as coded in FENIX is used to model the transport of trace ions in the first vacuum stage of the inductively coupled plasma mass spectrometer. Haibin Ma of the Farnsworth group at Brigham Young University measured two radial trace density profiles: one 0.7 mm upstream of the sampling cone and the other 10 mm downstream. We compare simulation results from FENIX with the experimental results. We find that gas dynamic convection and diffusion are unable to account for the experimentally-measured profile changes from upstream to downstream. Including discharge quenching and ambipolar electric fields, however, …


Testing Direct Simulation Monte Carlo Methods Against The Fluid Equations In The Inductively Coupled Plasma Mass Spectrometer, William R. Somers Aug 2008

Testing Direct Simulation Monte Carlo Methods Against The Fluid Equations In The Inductively Coupled Plasma Mass Spectrometer, William R. Somers

Theses and Dissertations

A Direct Simulation Monte Carlo fluid dynamics code named FENIX has been employed to study gas flow-through properties of the inductively coupled plasma mass spectrometer (ICP-MS). Simulation data have been tested against the Navier-Stokes and heat equations in order to see if FENIX functions properly. The Navier-Stokes and heat equations have been constructed from simulation data and are compared term by term. This comparison shows that FENIX is able to correctly reproduce fluid dynamics throughout the ICP-MS simulation, with an exception immediately behind the ICP-MS sampler cone, where the continuum criterion for the Navier-Stokes equation is not met. Testing the …